43 research outputs found
DNA replication stress-induced loss of reproductive capacity in S. cerevisiae and its inhibition by caloric restriction
In many organisms, attenuation of growth signaling by caloric restriction or mutational inactivation of growth signaling pathways extends lifespan and protects against cancer and other age-related diseases. The focus of many efforts to understand these effects has been on the induction of oxidative stress defenses that inhibit cellular senescence and cell death. Here we show that in the model organism S. cerevisiae, growth signaling induces entry of cells in stationary phase into S phase in parallel with loss of reproductive capacity, which is enhanced by elevated concentrations of glucose. Overexpression of RNR1 encoding a ribonucleotide reductase subunit required for the synthesis of deoxynucleotide triphosphates and DNA replication suppresses the accelerated loss of reproductive capacity of cells cultured in high glucose. The reduced reproductive capacity of these cells is also suppressed by excess threonine, which buffers dNTP pools when ribonucleotide reductase activity is limiting. Caloric restriction or inactivation of the AKT homolog Sch9p inhibits senescence and death in stationary phase cells caused by the DNA replication inhibitor hydroxyurea or by inactivation of the DNA replication and repair proteins Sgs1p or Rad27p. Inhibition of DNA replication stress represents a novel mechanism by which caloric restriction promotes longevity in S. cerevisiae. A similar mechanism may promote longevity and inhibit cancer and other age-related diseases in humans.We wish to thank Molly Burhans for preparing plasmid DNA and Figure 5. This research was supported by a National Cancer Institute Support Grant (P30CA016056) to Roswell Park Cancer Institute and by FCT - Fundacao para a Ciencia e Tecnologia (PTDC/BIA-MIC/114116/2009), Portugal. B. S. M. received a fellowship from FCT (SRFH/BD/41674/2007)
An in vitro evaluation of epigallocatechin gallate (eGCG) as a biocompatible inhibitor of ricin toxin
The catechin, epigallocatechin gallate (eGCG), found in green tea, has inhibitory activity against a number of protein toxins and was investigated in relation to its impact upon ricin toxin (RT) in vitro. The IC50 for RT was 0.08 ± 0.004 ng/mL whereas the IC50 for RT + 100 μM eGCG was 3.02 ± 0.572 ng/mL, indicating that eGCG mediated a significant (p < 0.0001) reduction in ricin toxicity. This experiment was repeated in the human macrophage cell line THP-1 and IC50 values were obtained for RT (0.54 ± 0.024 ng/mL) and RT + 100 μM eGCG (0.68 ± 0.235 ng/mL) again using 100 μM eGCG and was significant (p = 0.0013). The documented reduction in ricin toxicity mediated by eGCG was found to be eGCG concentration dependent, with 80 and 100 μg/mL (i.e. 178 and 223 μM respectively) of eGCG mediating a significant (p = 0.0472 and 0.0232) reduction in ricin toxicity at 20 and 4 ng/ml of RT in Vero and THP-1 cells (respectively). When viability was measured in THP-1 cells by propidium iodide exclusion (as opposed to the MTT assays used previously) 10 ng/mL and 5 ng/mL of RT was used. The addition of 1000 μM and 100 μM eGCG mediated a significant (p = 0.0015 and < 0.0001 respectively) reduction in ricin toxicity relative to an identical concentration of ricin with 1 μg eGCG. Further, eGCG (100 μM) was found to reduce the binding of RT B chain to lactose-conjugated Sepharose as well as significantly (p = 0.0039) reduce the uptake of RT B chain in Vero cells. This data suggests that eGCG may provide a starting point to refine biocompatible substances that can reduce the lethality of ricin
Oxidation of End-Capped Pentathienoacenes and Characterization of Their Radical Cations
A detailed investigation of the optical and electrochemical properties of two pentathienoacene derivatives, 2,6-bis(trimethylsilyl)-Α-pentathienoacene ( TMS-T5-TMS ) and 2,6-bis(triisopropylsilyl)-Α-pentathienoacene ( TIPS-T5-TIPS ), as the neutral and oxidized species was performed in the temperature range of 80–300 14K. The experimental solution UV/Vis and solid-state Raman spectra were interpreted by using time-dependent DFT and DFT quantum chemical calculations at the B3LYP/6-31G** level. Bond lengths, HOMO–LUMO positions, and charge distribution were also predicted by computational methods for both the neutral and oxidized states of each thienoacene. As evidenced by ESR and spectroelectrochemical data, upon oxidation the pentathienoacene derivative with the less sterically hindering trimethylsilyl solubilizing groups, TMS-T5-TMS , undergoes Π 14dimerization to form [ TMS-T5-TMS ] 2 2+ . In contrast, TIPS-T5-TIPS , with the more bulky triisopropylsilyl solubilizing groups, was oxidized to the radical cation but dimerization was prevented due to steric interactions. These experimental observations are supported by DFT calculations, which were used to investigate [ TMS-T5-TMS ] 2 2+ and [ TIPS-T5-TIPS ] 2 2+ Π 14dimers in the solid state and in solution. The redox potentials and absorption peak locations corresponding to the radical cations and Π 14dimer of TMS-T5-TMS were identified experimentally.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64441/1/chem_200900246_sm_miscellaneous_information.pd
Characterization of bovine serum albumin glycated with glucose, galactose and lactose
The non-enzymatic reaction between reducing sugars and proteins, known as glycation, has received increased attention from nutritional and medical research. In addition, there is a large interest in obtaining glycoconjugates of pure well-characterized oligosaccharides for biological research. In this study, glycation of bovine serum albumin (BSA) by d-glucose, d-galactose and d-lactose under dry-heat at 60°C for 30, 60, 120, 180 or 240 min was assessed and the glycated products studied in order to establish their biological recognition by lectins. BSA glycation was monitored using gel electrophoresis, determination of available amino groups and lectin binding assays. The BSA molecular mass increase and glycation sites were investigated by mass spectrometry and through digestion with trypsin and chymotrypsin. Depending on time and type of sugar, differences in BSA conjugation were achieved. Modified BSA revealed reduction of amino groups' availability and slower migration through SDS/PAGE. d-galactose was more reactive than d-glucose or d-lactose, leading to the coupling of 10, 3 and 1 sugar residues, respectively, after 120 minutes of reaction. BSA lysines (K) were the preferred modified amino acids; both K256 and K420 appeared the most available for conjugation. Only BSA-lactose showed biological recognition by specific lectins
Cápsulas de polvo de arándano como propuesta nutracéutica para mejorar la bioaccesibilidad de compuestos fenólicos
El arándano (Vaccinium corymbosum L.) posee un alto contenido de compuestos fenólicos los cuales han sido estudiados principalmente por su actividad antioxidante, antiobesogénica, antiinflamatoria, entre otras. Objetivo. Evaluar el efecto de la digestión gastrointestinal in vitro sobre la bioaccesibilidad de compuestos fenólicos y actividad antioxidante de una formulación nutracéutica de arándano (cápsula), comparado con arándano fresco y polvo. Materiales y métodos. Se obtuvieron extractos metanólicos de muestras de arándano fresco y liofilizado y se determinó su contenido de fenoles, flavonoides y antocianinas totales, así como también actividad antioxidante. Se llevó a cabo un ensayo de simulación de digestión gastrointestinal para evaluar la bioaccesibilidad de los compuestos fenólicos presentes en las muestras. Resultados. Los resultados mostraron que la digestión gástrica de arándano en polvo y en cápsula promovió una mayor bioaccesibilidad de fenoles (42% y 40%), flavonoides (52% y 33%) y antocianinas (45% y 40%) comparado con digestos de arándano fresco. Posterior a la digestión intestinal, la bioaccesibilidad de fenoles (63%) y flavonoides (67%) fue mayor en la cápsula de arándano comparada con su contraparte arándano en polvo. Las condiciones de digestión intestinal afectaron negativamente la bioaccesibilidad de las antocianinas independientemente del tipo de muestra evaluada. Conclusión. Las condiciones de digestión gástrica promueven una mayor estabilidad de los compuestos fenólicos en arándano en polvo y en cápsula lo que pudiera ser relevante para el mantenimiento de un ambiente antioxidante a este nivel. Las condiciones de digestión intestinal afectaron de manera particular a los compuestos fenólicos de arándano fresco y polvo, pero no a la cápsula, lo que puede sugerir que el encapsulamiento protegió de las condiciones alcalinas a los fenoles presentes. Se sugieren estudios posteriores sobre absorción in vitro de los componentes remanentes en intestino y sus posibles efectos sobre biomarcadores de estrés oxidativo en modelos in vivo.Blueberry (Vaccinium corymbosum L.) has a high content of phenolic compounds which have been studied mainly for their antioxidant, antiobesogenic, anti-inflammatory activity, among others. Objetive. The objective of the present study was to evaluate the effect of in vitro gastrointestinal digestion on the bioaccessibility of phenolic compounds and antioxidant activity of a nutraceutical formulation of blueberry (capsule), compared to fresh and powder blueberry. Materials and methods. Methanolic extracts of fresh and lyophilized blueberry were obtained and determined its total phenols, flavonoids, anthocyanins content, as well as antioxidant activity. A gastrointestinal digestion simulation test also was carried out to assess the bioaccessibility of the phenolic compounds found in samples. Results. The results showed that gastric digestion of powder and capsule blueberry promoted greater bioaccessibility of phenols (42% and 40%), flavonoids (52% and 33%) and anthocyanins (45% and 40%), compared to fresh blueberry digests. After intestinal digestion, the bioaccessibility of phenols (63%) and flavonoids (67%) was higher in the blueberry capsule compared to its powdered blueberry counterpart. The intestinal digestion conditions negatively affected the bioaccessibility of anthocyanins regardless of the type of sample evaluated. Conclusion. Gastric digestion conditions promote greater stability of phenolic compounds in powdered and capsule blueberries, which could be relevant for the maintenance of an antioxidant environment at this level. The intestinal digestion conditions particularly affected the phenolic compounds of fresh and lyophilized blueberry, but not the capsule, which may suggest that encapsulation protected the phenols present from alkaline conditions. Further studies on in vitro absorption of the remaining components in the intestine and their possible effects on oxidative stress biomarkers in in vivo models are suggested