18 research outputs found

    Topically Applied Recombinant Chemokine Analogues Fully Protect Macaques from Vaginal Simian-Human Immunodeficiency Virus Challenge

    Get PDF
    Effective strategies for preventing human immunodeficiency virus infection are urgently needed, but recent failures in key clinical trials of vaccines and microbicides highlight the need for new approaches validated in relevant animal models. Here, we show that 2 new chemokine (C-C motif) receptor 5 inhibitors, 5P12-RANTES (regulated on activation, normal T cell expressed and secreted) and 6P4-RANTES, fully protect against infection in the rhesus vaginal challenge model. These highly potent molecules, which are amenable to low-cost production, represent promising new additions to the microbicides pipelin

    Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.

    Get PDF
    The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies

    Topically applied recombinant chemokine analogues fully protect macaques from vaginal simian-human immunodeficiency virus challenge

    No full text
    Effective strategies for preventing human immunodeficiency virus infection are urgently needed, but recent failures in key clinical trials of vaccines and microbicides highlight the need for new approaches validated in relevant animal models. Here, we show that 2 new chemokine (C-C motif) receptor 5 inhibitors, 5P12-RANTES (regulated on activation, normal T cell expressed and secreted) and 6P4-RANTES, fully protect against infection in the rhesus vaginal challenge model. These highly potent molecules, which are amenable to low-cost production, represent promising new additions to the microbicides pipeline

    Bridging taxonomic and disciplinary divides in infectious disease

    Get PDF
    Citation: Borer, E.T., & Antonovics, J. (2011). Bridging Taxonomic and Disciplinary Divides in Infectious Disease. EcoHealth 8, 261–267. https://doi.org/10.1007/s10393-011-0718-6Pathogens traverse disciplinary and taxonomic boundaries, yet infectious disease research occurs in many separate disciplines including plant pathology, veterinary and human medicine, and ecological and evolutionary sciences. These disciplines have different traditions, goals, and terminology, creating gaps in communication. Bridging these disciplinary and taxonomic gaps promises novel insights and important synergistic advances in control of infectious disease. An approach integrated across the plant-animal divide would advance our understanding of disease by quantifying critical processes including transmission, community interactions, pathogen evolution, and complexity at multiple spatial and temporal scales. These advances require more substantial investment in basic disease research
    corecore