457 research outputs found

    Gs-Coupled Adenosine Receptors Differentially Limit Antigen-Induced Mast Cell Activation

    Get PDF
    Mast cell activation results in the immediate release of proinflammatory mediators prestored in cytoplasmic granules, as well as initiation of lipid mediator production and cytokine synthesis by these resident tissue leukocytes. Allergen-induced mast cell activation is central to the pathogenesis of asthma and other allergic diseases. Presently, most pharmacological agents for the treatment of allergic disease target receptors for inflammatory mediators. Many of these mediators, such as histamine, are released by mast cells. Targeting pathways that limit antigen-induced mast cell activation may have greater therapeutic efficacy by inhibiting the synthesis and release of many proinflammatory mediators produced in the mast cell. In vitro studies using cultured human and mouse mast cells, and studies of mice lacking A2B receptors, suggest that adenosine receptors, specifically the Gs-coupled A2A and A2B receptors, might provide such a target. Here, using a panel of mice lacking various combinations of adenosine receptors, and mast cells derived from these animals, we show that adenosine receptor agonists provide an effective means of inhibition of mast cell degranulation and induction of cytokine production both in vitro and in vivo. We identify A2B as the primary receptor limiting mast cell degranulation, whereas the combined activity of A2A and A2B is required for the inhibition of cytokine synthesis

    In-depth mesocrystal formation analysis of microwave-assisted synthesis of LiMnPO4nanostructures in organic solution

    Get PDF
    In the present work, we report on the preparation of LiMnPO4 (lithiophilite) nanorods and mesocrystals composed of self-assembled rod subunits employing microwave-assisted precipitation with processing times on the time scale of minutes. Starting from metal salt precursors and H3PO4 as phosphate source, single-phase LiMnPO4 powders with grain sizes of approx. 35 and 65 nm with varying morphologies were obtained by tailoring the synthesis conditions using rac-1-phenylethanol as solvent. The mesocrystal formation, microstructure and phase composition were determined by electron microscopy, nitrogen physisorption, X-ray diffraction (including Rietveld refinement), dynamic light scattering, X-ray absorption and X-ray photoelectron spectroscopy, and other techniques. In addition, we investigated the formed organic matter by gas chromatography coupled with mass spectrometry in order to gain a deeper understanding of the dissolution\u2013precipitation process. Also, we demonstrate that the obtained LiMnPO4 nanocrystals can be redispersed in polar solvents such as ethanol and dimethylformamide and are suitable as building blocks for the fabrication of nanofibers via electrospinning

    A2A adenosine receptor deletion is protective in a mouse model of Tauopathy

    Get PDF
    © 2016 Macmillan Publishers Limited All rights reserved. This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http:// creativecommons.org/licenses/by-nc-nd/4.0/Consumption of caffeine, a non-selective adenosine A2A receptor (A2AR) antagonist, reduces the risk of developing Alzheimer's disease (AD) in humans and mitigates both amyloid and Tau burden in transgenic mouse models. However, the impact of selective A2AR blockade on the progressive development of AD-related lesions and associated memory impairments has not been investigated. In the present study, we removed the gene encoding A2AR from THY-Tau22 mice and analysed the subsequent effects on both pathological (Tau phosphorylation and aggregation, neuro-inflammation) and functional impairments (spatial learning and memory, hippocampal plasticity, neurotransmitter profile). We found that deleting A2ARs protect from Tau pathology-induced deficits in terms of spatial memory and hippocampal long-term depression. These effects were concomitant with a normalization of the hippocampal glutamate/gamma-amino butyric acid ratio, together with a global reduction in neuro-inflammatory markers and a decrease in Tau hyperphosphorylation. Additionally, oral therapy using a specific A2AR antagonist (MSX-3) significantly improved memory and reduced Tau hyperphosphorylation in THY-Tau22 mice. By showing that A2AR genetic or pharmacological blockade improves the pathological phenotype in a Tau transgenic mouse model, the present data highlight A2A receptors as important molecular targets to consider against AD and Tauopathies.This work was supported by grants from France Alzheimer (to DB) and LECMA/Alzheimer Forschung Initiative (to DB and CEM). DB and LVL got a Égide/Pessoa program EU exchange grant. Our laboratory is also supported by the LabEx (excellence laboratory) DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer’s disease), Inserm, CNRS, Université Lille 2, Lille Métropole Communauté Urbaine, Région Nord/Pas-de-Calais, FEDER, DN2M, ANR (ADONTAGE and ADORATAU, to DB) and FUI MEDIALZ. We thank the animal facility of IMPRT-IFR114 and M Besegher, I Brion, D Cappe, R Dehaynin, J Devassine, Y Lepage, C Meunier and D Taillieu for transgenic mouse production and animal care, as well as M Basquin, D Demeyer, S Eddarkaoui, H Obriot and M Schneider for support. CL holds a doctoral grant from Lille 2 University, and SB from Région Nord Pas de Calais and CHRU de Lille. VF holds a grant from Région Nord-Pas-de-Calais and Inserm. EF holds a post-doctoral grant from Région Nord-Pas-de-Calais (DN2M). LVL is an Investigator FCT (Fundação para a Ciência e Tecnologia, Portugal).info:eu-repo/semantics/publishedVersio

    Attributes influencing parental decision-making to receive the Tdap vaccine to reduce the risk of pertussis transmission to their newborn – outcome of a crosssectional conjoint experiment in Spain and Italy

    Get PDF
    Pertussis vaccination of parents and household contacts (‘cocooning’) to protect newborn infants is an established strategy in many countries, although uptake may be low. Many aspects may influence such decision-making. We conducted a cross-sectional survey (NCT01890447) of households and other close contacts of newborns aged ≤6 months (or of expectant mothers in their last trimester) in Spain and Italy, using an adaptive discrete-choice experiment questionnaire. Aims were to assess the relative importance of attributes influencing vaccine adoption, and to estimate variation in vaccine adoption rates and the impact of cost on vaccination rates. Six hundred and fifteen participants (Spain, n = 313; Italy, n = 302) completed the survey. Of 144 available questionnaire scenarios, the most frequently selected (14% of respondents in both countries) were infant protection by household vaccination at vaccination center, recommendation by family physician and health authorities, with information available on leaflets and websites. The attribute with highest median relative importance was ‘reduction in source of infection’ in Spain (23.1%) and ‘vaccination location’ in Italy (18.8%). Differences between other attributes were low in both countries, with media attributes showing low importance. Over 80% of respondents indicated a definite or probable response to vaccine adoption (at no-cost) with estimated probability of adoption of 89–98%; applying vaccine costs (25€ per person) would reduce the probability of uptake by 7–20% in definite/probable respondents. Awareness of these determinants is helpful in informing Health Authorities and healthcare practitioners implementing a cocooning strategy for those populations where maternal immunization is not a preferred option

    Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death

    Get PDF
    The purinergic signalling system, which uses purines and pyrimidines as chemical transmitters, and purinoceptors as effectors, is deeply rooted in evolution and development and is a pivotal factor in cell communication. The ATP and its derivatives function as a 'danger signal' in the most primitive forms of life. Purinoceptors are extraordinarily widely distributed in all cell types and tissues and they are involved in the regulation of an even more extraordinary number of biological processes. In addition to fast purinergic signalling in neurotransmission, neuromodulation and secretion, there is long-term (trophic) purinergic signalling involving cell proliferation, differentiation, motility and death in the development and regeneration of most systems of the body. In this article, we focus on the latter in the immune/defence system, in stratified epithelia in visceral organs and skin, embryological development, bone formation and resorption, as well as in cancer. Cell Death and Disease (2010) 1, e9; doi:10.1038/cddis.2009.11; published online 14 January 201

    An improved version of the Shadow Position Sensor readout electronics on-board the ESA PROBA-3 Mission

    Get PDF
    PROBA-3 [1] [2] is a Mission of the European Space Agency (ESA) composed by two satellites flying in formation and aimed at achieving unprecedented performance in terms of relative positioning. The mission purpose is, in first place, technological: the repeated formation break and acquisition during each orbit (every about twenty hours) will be useful to demonstrate the efficacy of the closed-loop control system in keeping the formation-flying (FF) and attitude (i.e. the alignment with respect to the Sun) of the system. From the scientific side, instead, the two spacecraft will create a giant instrument about 150 m long: an externally occulted coronagraph named ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun) dedicated to the study of the inner part of the visible solar corona. The two satellites composing the mission are: the Coronagraph Spacecraft (CSC), hosting the Coronagraph Instrument (CI), and the disk-shaped (1.4 m diameter) Occulter Spacecraft (OSC). The PROBA-3 GNC (Guidance, Navigation and Control) system will employ several metrological subsystems to keep and retain the desired relative position and the absolute attitude (i.e. with respect to the Sun) of the aligned spacecraft, when in observational mode. The SPS subsystem [5] is one of these metrological instruments. It is composed of eight silicon photomultipliers (SiPMs), sensors operated in photovoltaic mode [6] that will sense the penumbra light around the Instrument's pupil so to detect any FF displacement from the nominal position. In proximity of the CDR (Critical Design Review) phase, we describe in the present paper the changes occurred to design in the last year in consequence of the tests performed on the SPS Breadboard (Evaluation Board, EB) and the SPS Development Model (DM) and that will finally lead to the realization of the flight version of the SPS system

    The Orexigenic Effect of Ghrelin Is Mediated through Central Activation of the Endogenous Cannabinoid System

    Get PDF
    INTRODUCTION Ghrelin and cannabinoids stimulate appetite, this effect possibly being mediated by the activation of hypothalamic AMP-activated protein kinase (AMPK), a key enzyme in appetite and metabolism regulation. The cannabinoid receptor type 1 (CB1) antagonist rimonabant can block the orexigenic effect of ghrelin. In this study, we have elucidated the mechanism of the putative ghrelin-cannabinoid interaction. METHODS The effects of ghrelin and CB1 antagonist rimonabant in wild-type mice, and the effect of ghrelin in CB1-knockout animals, were studied on food intake, hypothalamic AMPK activity and endogenous cannabinoid content. In patch-clamp electrophysiology experiments the effect of ghrelin was assessed on the synaptic inputs in parvocellular neurons of the hypothalamic paraventricular nucleus, with or without the pre-administration of a CB1 antagonist or of cannabinoid synthesis inhibitors. RESULTS AND CONCLUSIONS Ghrelin did not induce an orexigenic effect in CB1-knockout mice. Correspondingly, both the genetic lack of CB1 and the pharmacological blockade of CB1 inhibited the effect of ghrelin on AMPK activity. Ghrelin increased the endocannabinoid content of the hypothalamus in wild-type mice and this effect was abolished by rimonabant pre-treatment, while no effect was observed in CB1-KO animals. Electrophysiology studies showed that ghrelin can inhibit the excitatory inputs on the parvocellular neurons of the paraventricular nucleus, and that this effect is abolished by administration of a CB1 antagonist or an inhibitor of the DAG lipase, the enzyme responsible for 2-AG synthesis. The effect is also lost in the presence of BAPTA, an intracellular calcium chelator, which inhibits endocannabinoid synthesis in the recorded parvocellular neuron and therefore blocks the retrograde signaling exerted by endocannabinoids. In summary, an intact cannabinoid signaling pathway is necessary for the stimulatory effects of ghrelin on AMPK activity and food intake, and for the inhibitory effect of ghrelin on paraventricular neurons

    Genome-wide gene expression profiling suggests distinct radiation susceptibilities in sporadic and post-Chernobyl papillary thyroid cancers

    Get PDF
    Papillary thyroid cancers (PTCs) incidence dramatically increased in the vicinity of Chernobyl. The cancer-initiating role of radiation elsewhere is debated. Therefore, we searched for a signature distinguishing radio-induced from sporadic cancers. Using microarrays, we compared the expression profiles of PTCs from the Chernobyl Tissue Bank (CTB, n=12) and from French patients with no history of exposure to ionising radiations (n=14). We also compared the transcriptional responses of human lymphocytes to the presumed aetiological agents initiating these tumours, γ-radiation and H2O2. On a global scale, the transcriptomes of CTB and French tumours are indistinguishable, and the transcriptional responses to γ-radiation and H2O2 are similar. On a finer scale, a 118 genes signature discriminated the γ-radiation and H2O2 responses. This signature could be used to classify the tumours as CTB or French with an error of 15–27%. Similar results were obtained with an independent signature of 13 genes involved in homologous recombination. Although sporadic and radio-induced PTCs represent the same disease, they are distinguishable with molecular signatures reflecting specific responses to γ-radiation and H2O2. These signatures in PTCs could reflect the susceptibility profiles of the patients, suggesting the feasibility of a radiation susceptibility test

    Comparative genomics of the class 4 histone deacetylase family indicates a complex evolutionary history

    Get PDF
    BACKGROUND: Histone deacetylases are enzymes that modify core histones and play key roles in transcriptional regulation, chromatin assembly, DNA repair, and recombination in eukaryotes. Three types of related histone deacetylases (classes 1, 2, and 4) are widely found in eukaryotes, and structurally related proteins have also been found in some prokaryotes. Here we focus on the evolutionary history of the class 4 histone deacetylase family. RESULTS: Through sequence similarity searches against sequenced genomes and expressed sequence tag data, we identified members of the class 4 histone deacetylase family in 45 eukaryotic and 37 eubacterial species representative of very distant evolutionary lineages. Multiple phylogenetic analyses indicate that the phylogeny of these proteins is, in many respects, at odds with the phylogeny of the species in which they are found. In addition, the eukaryotic members of the class 4 histone deacetylase family clearly display an anomalous phyletic distribution. CONCLUSION: The unexpected phylogenetic relationships within the class 4 histone deacetylase family and the anomalous phyletic distribution of these proteins within eukaryotes might be explained by two mechanisms: ancient gene duplication followed by differential gene losses and/or horizontal gene transfer. We discuss both possibilities in this report, and suggest that the evolutionary history of the class 4 histone deacetylase family may have been shaped by horizontal gene transfers
    • …
    corecore