22 research outputs found

    Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci

    Get PDF
    Analysis of de novo CNVs (dnCNVs) from the full Simons Simplex Collection (SSC) (N = 2,591 families) replicates prior findings of strong association with autism spectrum disorders (ASDs) and confirms six risk loci (1q21.1, 3q29, 7q11.23, 16p11.2, 15q11.2-13, and 22q11.2). The addition of published CNV data from the Autism Genome Project (AGP) and exome sequencing data from the SSC and the Autism Sequencing Consortium (ASC) shows that genes within small de novo deletions, but not within large dnCNVs, significantly overlap the high-effect risk genes identified by sequencing. Alternatively, large dnCNVs are found likely to contain multiple modest-effect risk genes. Overall, we find strong evidence that de novo mutations are associated with ASD apart from the risk for intellectual disability. Extending the transmission and de novo association test (TADA) to include small de novo deletions reveals 71 ASD risk loci, including 6 CNV regions (noted above) and 65 risk genes (FDR ≤ 0.1). Through analysis of de novo mutations in autism spectrum disorder (ASD), Sanders et al. find that small deletions, but not large deletions/duplications, contain one critical gene. Combining CNV and sequencing data, they identify 6 loci and 65 genes associated with ASD. © 2015 Elsevier Inc

    Plastic relaxation of thermoelastic stress in aluminum/ceramic composites

    No full text
    The dislocation generation due to a thermoelastic stress in 2024 Al/ceramic (SiC or TiC) composites was studied using transmission electron microscopy Composites containing different ceramic particulates, ceramic volume fraction, and particle size were investigated. Dislocation density profiles were measured as a function of the distance from an Al/ceramic interface and compared with those calculated from an elastoplasticity model which accounts for the volume fraction of the ceramic particles. The intensity of dislocation generation showed a strong particle size dependence: as the ceramic particle size became of the order of a micron, the intensity of dislocation generation increased significantly. With an increase in the volume fraction of the ceramic particles, the dislocation density also increased, and the dislocation structure became a more tangled arrangement. If heat dissipation was taken into account as part of the plastic work, the predicted dislocation densities of the elastoplasticity model were found to be in reasonable agreement with the measured dislocation densities of 109 to 1010 cm-2. © 1990 The Metallurgical of Society of AIME

    Thermo-mechanical and high-temperature dielectric properties of cordierite-mullite-alumina ceramics

    No full text
    Heterogeneous ceramics made of cordierite (55-56 wt%), mullite (22-33 wt%) and alumina (23-11 wt%) were prepared by sintering non-standard raw materials containing corundum, talc, alpha-quartz, K-feldspar, kaolinite and mullite with small amounts of calcite, cristobalite and glass phases. The green specimens prepared by PVA assisted dry-pressing were sintered within the temperature range of 950-1500 degrees C for different dwelling times (2-8 h). The effects of sintering schedule on crystalline phase assemblage and thermomechanical properties were investigated. The sintered ceramics exhibited low coefficients of thermal expansion (CTE) (3.2-4.2 x 10(-6) degrees C-1), high flexural strength (90-120 MPa and high Young modulus (100 GPa). The specimens sintered at 1250 degrees C exhibited the best thermal shock resistance (Delta T similar to 350 degrees C). The thermal expansion coefficients and thermal shock resistance were studied using Schapery model, the modelling results implying the occurrence of non-negligible mechanical interactions between the phases in bulk. The dielectric properties characterized from room to high temperature (RT-HT, up to 600 degrees C) revealed: (i) noticeable effects of sintering schedule on dielectric constant (5-10) and dielectric loss factor (similar to 0.02-0.04); (ii) stable dielectric properties until the failure of the electrode material. The thermomechanical properties coupled with desirable dielectric properties make the materials suitable for high density integrated circuitry or high temperature low-dielectric materials engineering. (C) 2016 Elsevier Ltd and Techna Group S.r.l. All rights reserved

    Mouse chromosome 1.

    No full text
    corecore