47 research outputs found

    The effects of goat browsing on ecosystem patterns and processes in succulent thicket, South Africa

    Get PDF
    Transformation in the arid succulent thicket of the Eastern Cape of South Africa in response to unsustainable livestock production has been widespread, with less than 10 percent remaining intact. Transformation in succulent thicket has resulted in large areas of dense thicket (comprising a two-phase mosaic of perennial-vegetated patches separated by animal paths and bare patches) being replaced with a ‘pseudo-savanna’ of remnant canopy trees with a structurally simple field layer of ephemeral and short- lived perennial grasses and forbs. There is an extensive literature describing the transformation of succulent thicket, with many speculative statements about the underlying mechanisms of transformation. The central focus of this study was to improve our mechanistic understanding of transformation in succulent thicket using field experiments. Hopefully these results will set another foundation upon which future management of succulent thicket can be improved and large-scale restoration initiated. This study comprises four themes that are linked to the concept of landscape function. The central premise of landscape function is that functional landscapes have mechanisms that capture and retain scarce resources. Conversely, as landscapes become increasingly dysfunctional, so these mechanisms become disrupted. In succulent thicket, dysfunctio n appears to be linked to the reduced ability to harvest water, cycle carbon and a loss of organic carbon. In this thesis I examined some of the key processes that influence water and organic carbon fluxes: perennial vegetation cover, soil fertility, litter fall and decomposition, and runoff and soil erosion. The experimental design that was used for all this work was a factorial ANOVA based on replicated fenceline contrasts that reflect differences in long-term management history. The main objectives of this thesis were to: quantify the patterns of transformation in an arid form of succulent thicket, including changes in the biomass, cover and structure of the dominant vegetation guilds; test the stability of the transformed succulent thicket ecosystem to show whether it is a new stable state or an intermediate stage in a trajectory towards a highly desertified state where only the ephemeral grasses and forbs persist; describe and compare soil fertility across transformation contrasts, concentrating on changes in the spatial patterns of soil resources and the ability of the soil to harvest precipitation; to compare litter fall and decomposition of leaf material from the dominant plants in intact and transformed succulent thicket; to quantify and compare run-off and erosion from run-off plots in intact and transformed succulent thicket. Transformation and stability I quantified the changes in plant diversity, physiognomy and biomass that occur across transformation contrasts. Thicket transformation results in a significant loss of plant diversity and functional types. There is also a significant reduction in the biomass (c. 80 t.ha-1) and structural complexity of the vegetation, both vertically and horizontally. These results were interpreted in terms of their implications for ecosystem functioning and stability. To test the stability of the transformed succulent thicket I used aerial photographs and ground-truthing to track the survivorship of canopy trees over 60 years in pseudo-savanna landscapes. I also measured seedling establishment in different habitats. I show that the pseudo-savanna is not a stable state owing to ongoing adult mortality and no recruitment of canopy trees. Soil fertility and water status I hypothesised that the above-ground changes in ve getation would be accompanied by similar trends in the pattern and levels of soil nutrient resources and the ability of the landscape to harvest precipitation. I compared soil fertility (organic carbon, available nitrogen and phosphorus), texture, matric potential, and surface micro-topography in the two main micro- habitats on either side of the replicated fenceline contrasts. The results show that intact spekboom thicket has a distinct spatial pattern of soil fertility where nutrients and organic carbon are concentrated under the patches of perennial shrubs, compared to under canopy trees and open spaces. Transformation results in a significant homogenisation out of this pattern and an overall reduction in the fertility of the landscape. The proportion of the landscape surface that would promote infiltration of water decreases from 60 – 0.6 percent. Soil moisture retention (matric potential) also decreases with transformation. I interpreted these patterns in terms of the ability of the landscape to harvest and release water after rainfall events. Litter fall and decomposition Surface litter and soil organic matter are critical components to wooded ecosystems; contributing to several ecosystem functions. The rates of litter fall and decomposition are ratelimiting steps in nutrient cycling and incorporation of organic matter into the soil. The ecological mechanisms behind the collapse of succulent thicket in the face of domestic herbivory are not fully understood, but are believed to include the breakdown of several ecosystem processes, including litter fall and decomposition. I quantified the changes in litter fall and litter decomposition of four of the dominant perennial woody plants (Euclea undulata, Pappea capensis, Portulacaria afra and Rhus longispina) across the replicated fenceline. Litter fall was measured over 14 months using mesh traps. Decomposition was measured over 15 months using a combination of litterbags and unprotected leaf packs. I also quantified soil microclimate during the experimental period; hypothesising that transformation would lead to soil conditions less amenable for biotic activity. Litter fall in succulent thicket was very high for a semi-arid system, comparing more to temperate forests. The leaf-succulent P. afra contributed the largest single component of the total litter production at a landscape scale. The effect of transformation on litter fall was species specific. Deep-rooted or drought-adapted species showed no change in litter yield with transformation; shallow-rooted species showed a significant decrease. There were few significant differences in decomposition rates across the transformation gradient and between litter types. Portulacaria afra litter had the steepest rate of mass loss, and was most affected by transformation. The more recalcitrant (high C:N ratio) leaves of P. capensis remained largely unaffected by transformation. These results indicate the critical role of the perennial vegetation in incorporating organic carbon into the soil. Transformation of succulent thicket leads to a disruption of the flow of carbon into the soil, reinforcing the cycle of transformation through reduced fertility. Rehabilitation of this ecosystem will require the active establishment of species, such as P. afra, that will restart the flow of carbon into the soil. Run-off & Erosion The landscape function model predicts that functional semi-arid shrublands efficiently conserve limiting resources such as water and water-bourn sediments (soil and organic matter). As these rangelands become transformed through unsustainable livestock production, so their ability to conserve resources decreases. The primary determinant of landscape function and conservation of resources appears to be the proportional cover of perennial vegetation. I hypothesised that the switch from a two-phase mosaic dominated by perennial succulent and woody shrubs to a single phase system dominated by an ephemeral field layer would be accompanied by disruption of the mechanisms that conserve resources. Specifically, I tested the hypothesis that transformation of succulent thicket increases runoff volume, sediment concentration of runoff, soil erosion and loss of organic matter at a patch scale (c. 100 m2). Runoff and water-borne sediment were measured from runoff plots established across replicated fenceline contrasts. Data were collected from eight extreme weather events over two years. There were no significant differences between runoff and erosion across the transformation contrast, as each extreme weather event was unique in terms of its runoff response. The transformed runoff plots alone also gave inconsistent results, largely due to differences in the cover of ephemeral forbs and weakly perennial grasses. Runoff and erosion were not predictable from the data across the transformation gradient due to complex interactions between the nature of the above-ground vegetation, soil micro-topography and land use history. The results highlighted the need for longer-term catchment experiments to generate a predictive understanding of the effect of transformation on runoff and erosion in succulent thicket

    Science is the fuel required for lifting ecosystem restoration into the orbit of hundreds of millions of hectares

    Get PDF
    Restoring the hundreds of millions of hectares of degraded ecosystems worldwide will require new approaches to raise the required funds and new systems to implement at the required scales. Two decades of large-scale restoration in the subtropical thicket biome in the Eastern Cape, South Africa, have generated valuable information for developing such approaches and systems. The successful upscaling of restoration in this biome can be attributed to four main actions. First, from the outset in 2003, peer-reviewed science was foundational to the entire restoration initiative. Second, also from the outset, there was a commitment to large-scale, long-term ecological research by the public sector (the then Department of Water Affairs and Forestry in South Africa), which resulted in what is to our knowledge the world’s largest ecosystem restoration experiment, comprising 330 quarter-hectare plots distributed over ∼75,000 km2. Third, retrospective scientific description of previous restoration work — done by farmers in the 1960s and 1970s — provided valuable information on restoration’s multiple benefits, without having to wait for the large-scale restoration experiment to yield results. Lastly, diverse and short-term scoping studies were undertaken to address questions that emerged during the large-scale implementation of restoration. These studies were vital for rapid adaptive management and planning new scientific experiments, filling a gap between long-term ecological research and retrospective science

    Effectiveness of Biodiversity Surrogates for Conservation Planning: Different Measures of Effectiveness Generate a Kaleidoscope of Variation

    Get PDF
    Conservation planners represent many aspects of biodiversity by using surrogates with spatial distributions readily observed or quantified, but tests of their effectiveness have produced varied and conflicting results. We identified four factors likely to have a strong influence on the apparent effectiveness of surrogates: (1) the choice of surrogate; (2) differences among study regions, which might be large and unquantified (3) the test method, that is, how effectiveness is quantified, and (4) the test features that the surrogates are intended to represent. Analysis of an unusually rich dataset enabled us, for the first time, to disentangle these factors and to compare their individual and interacting influences. Using two data-rich regions, we estimated effectiveness using five alternative methods: two forms of incidental representation, two forms of species accumulation index and irreplaceability correlation, to assess the performance of ‘forest ecosystems’ and ‘environmental units’ as surrogates for six groups of threatened species—the test features—mammals, birds, reptiles, frogs, plants and all of these combined. Four methods tested the effectiveness of the surrogates by selecting areas for conservation of the surrogates then estimating how effective those areas were at representing test features. One method measured the spatial match between conservation priorities for surrogates and test features. For methods that selected conservation areas, we measured effectiveness using two analytical approaches: (1) when representation targets for the surrogates were achieved (incidental representation), or (2) progressively as areas were selected (species accumulation index). We estimated the spatial correlation of conservation priorities using an index known as summed irreplaceability. In general, the effectiveness of surrogates for our taxa (mostly threatened species) was low, although environmental units tended to be more effective than forest ecosystems. The surrogates were most effective for plants and mammals and least effective for frogs and reptiles. The five testing methods differed in their rankings of effectiveness of the two surrogates in relation to different groups of test features. There were differences between study areas in terms of the effectiveness of surrogates for different test feature groups. Overall, the effectiveness of the surrogates was sensitive to all four factors. This indicates the need for caution in generalizing surrogacy tests

    Combining floristic and growth form composition in a gradient- directed vegetation survey of Matjiesrivier Nature Reserve, Western Cape, South Africa

    No full text
    The floristically complex vegetation of Matjiesrivier Nature Reserve (MNR). which spans the ecotone between the Fynbos and Succulent Karoo Biomes in the eastern Cederberg Mountains, Western Cape, was surveyed using a gradient-directed transect (gradsect). The gradsect was aligned with a topo-ciimatic aridity gradient across MNR. The vegetation was classified using TWINSPAN. based on a combination of floristic and growth form characteristics, and an understanding of the main ecological gradients controlling vegetation distribution. The final classification described seven robust and eco­ logically meaningful communities that represented a trade-off between statistical rigour and practicality for management. The seven communities were mapped using a geographical information system (GIS)

    Calibration, validation and application of the SWAT model to determine the hydrological benefit of wetland rehabilitation in KwaZulu-Natal, South Africa

    No full text
    In South Africa, with highly variable and intense land-use practices, coupled with limited soil fertility and water resources, there has been a long history of encroachment of arable lands (sugarcane and timber plantations) into surrounding wetlands. Although wetland delineation within the timber and sugar sectors is well-defined in policy, and existing and proposed legislation, there are significant areas of non-compliance. The spatially-explicit Soil Water Assessment Tool (SWAT) was adopted to investigate the interactions of climate, land-use and soil on the water-use of natural and encroached wetlands. This paper documents the calibration, validation and application of the SWAT model on Quaternary Catchment (QC) U20G, which is a 498 km2 catchment that forms part of the uMngeni River basin. The SWAT-CUP parameter sensitivity and optimization model was tested with daily observed streamflow data for this catchment. Parameters were modified using the sequential uncertainty fitting (SUFI-2) analysis routine to calibrate the model. The simulated flow had a close fit to the observed flow with a regression coefficient (r2) of 0.87 and a Nash-Sutcliffe (NS) coefficient of 0.8. Through the buffer scenario analysis, the model showed that if the wetland and a 20-m buffer were to be returned to a natural state, there could be a 16% increase in the annual streamflow contribution, with an upper limit of a 60% increase in some hydrologic response units (HRUs). Thus there would be a hydrological gain if wetlands and sensitive buffer areas were to be cleared of commercial timber species and sugarcane

    Litter dynamics across browsing-induced fenceline contrasts in succulent thicket, South Africa

    No full text
    Semi-arid succulent thicket in South Africa has experienced extensive livestock-induced transformation, reflected in extensive structural changes and loss of biodiversity, biomass and soil carbon. The ecological mechanisms contributing to this transformation are not fully understood but are believed to include the breakdown of ecosystem processes including litter production and decomposition, which are rate-limiting steps in nutrient cycling and incorporation of organic matter into the soil. In this study we investigated the effect of transformation on litter production and decomposition in succulent thicket. We measured litter production and decomposition of four dominant perennial woody plants (Euclea undulata, Pappea capensis, Portulacaria afra and Rhus longispina) across replicated fenceline contrasts. Litter production was measured over 14 months using mesh traps. Decomposition was measured over 15 months using a combination of litterbags and leaf packs. Litter production in succulent thicket was very high for a semi-arid system (approaching that of temperate forests), with the leaf- and stem-succulent P. afra contributing the largest component. Transformation caused a significant reduction in litter production at a landscape scale (4126 vs 2881 kg/ha/yr), primarily due to reduced cover of P. afra. Surprisingly, transformation had few significant effects on the rate of decomposition of litter, possibly due to a switch from biotic to abiotic decomposition processes. The perennial vegetation in succulent thicket, particularly P. afra, appears to play a critical role in the maintenance of the ecosystem by facilitating the incorporation of organic matter into soil. Transformation of succulent thicket leads to a disruption of the carbon cycle, ultimately resulting in degradation of the ecosystem. Successful restoration is likely to depend on increasing the rates of organic matter return to soils. P. afra is a potential carbon restoration pump as it is both drought-resistant and easily propagated from cuttings. © 2008 SAAB.Articl

    Climatic controls on ecosystem resilience: Postfire regeneration in the Cape Floristic Region of South Africa

    No full text
    Conservation of biodiversity and natural resources in a changing climate requires understanding what controls ecosystem resilience to disturbance. This understanding is especially important in the fire-prone Mediterranean systems of the world. The fire frequency in these systems is sensitive to climate, and recent climate change has resulted in more frequent fires over the last few decades. However, the sensitivity of postfire recovery and biomass/fuel load accumulation to climate is less well understood than fire frequency despite its importance in driving the fire regime. In this study, we develop a hierarchical statistical framework to model postfire ecosystem recovery using satellite-derived observations of vegetation as a function of stand age, topography, and climate. In the Cape Floristic Region (CFR) of South Africa, a fire-prone biodiversity hotspot, we found strong postfire recovery gradients associated with climate resulting in faster recovery in regions with higher soil fertility, minimum July (winter) temperature, and mean January (summer) precipitation. Projections using an ensemble of 11 downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) general circulation models (GCMs) suggest that warmer winter temperatures in 2080–2100 will encourage faster postfire recovery across the region, which could further increase fire frequency due to faster fuel accumulation. However, some models project decreasing precipitation in the western CFR, which would slow recovery rates there, likely reducing fire frequency through lack of fuel and potentially driving local biome shifts from fynbos shrubland to nonburning semidesert vegetation. This simple yet powerful approach to making inferences from large, remotely sensed datasets has potential for wide application to modeling ecosystem resilience in disturbance-prone ecosystems globally
    corecore