194 research outputs found

    Diatom beta-diversity in streams increases with spatial scale and decreases with nutrient enrichment across regional to sub-continental scales

    Get PDF
    Aim To quantify the relative contributions of local community assembly processes versus gamma-diversity to beta-diversity, and to assess how spatial scale and anthropogenic disturbance (i.e. nutrient enrichment) interact to dictate which driver dominates. Location France and the United States. Time period 1993-2011. Major taxa studied Freshwater stream diatoms. Methods beta-diversity along a nutrient enrichment gradient was examined across multiple spatial scales. beta-diversity was estimated using multi-site Sorensen dissimilarity. We assessed the relative importance of specialists versus generalists using Friedley coefficient, and the contribution of local community assembly versus gamma-diversity to beta-diversity across spatial scales, with a null model. Finally, we estimated the response of beta-diversity to environmental and spatial factors by testing the correlations between community, environmental and geographical distance matrices with partial Mantel tests. Results beta-diversity generally increased with spatial scale but the rate of increase depended on nutrient enrichment level. beta-diversity decreased significantly with increasing nutrient enrichment level due to the loss of specialist species. Local assembly was an important driver of beta-diversity especially under low nutrient enrichment. Significant partial Mantel correlations were observed between diatom beta-diversity and pure environmental distances under these conditions, highlighting the role of species sorting in local assembly processes. Conversely, in heavily enriched sites, only spatial distances were significantly correlated with beta-diversity, which indicated a substantial role of dispersal processes. Main conclusions Nutrient concentration mediated the expected increase in beta-diversity with spatial scales. Across spatial scales, beta-diversity was more influenced by local assembly processes rather than by gamma-diversity. Nutrient enrichment was associated with an overall decline in diatom beta-diversity and a shift in assembly processes from species sorting to dispersal, notably due to the elimination of some specialists and their subsequent replacement by generalists.Peer reviewe

    Time resolved amplified FRET identifies protein kinase B activation state as a marker for poor prognosis in clear cell renal cell carcinoma

    Get PDF
    Purpose Clear cell Renal Cell Carcinomas (ccRCC), the largest group of renal tumours, are resistant to classical therapies. The determination of the functional state of actionable biomarkers for the assessment of these adenocarcinomas is essential. The dysregulation of the oncoprotein, PKB/Akt has been linked with poor prognoses in human cancers. Material & methods We analysed the status of the PKB/Akt pathway in a representative tumour tissue microarray obtained from the primary tumours and their metastases in 60 ccRCC with long term follow up. We sought to define the evolution of this pathway from the primary tumour to the metastatic event and to know the impact of its functional state in tumour aggressiveness and patient survival. Two-site time resolved amplified FRET (A-FRET) was utilised for assessing the activation state of PKB/Akt and this was compared to conventional immunohistochemistry measurements. Results Activation state of PKB/Akt in primary tumours defined by A-FRET correlated with poorer overall survival (hazard ratio 0.228; p = 0.002). Whereas, increased protein expression of phosphoPKB/Akt, identified using classical immunohistochemistry, yielded no significant difference (hazard ratio 1.390; p = 0.548). Conclusions Quantitative determination of PKB/Akt activation in ccRCC primary tumours alongside other diagnostics tools could prove key in taking oncologists closer to an efficient personalised therapy in ccRCC patients. General significance The quantitative imaging technology based on Amplified-FRET can rapidly analyse protein activation states and molecular interactions. It could be used for prognosis and assess drug function during the early cycles of chemotherapy. It enables evaluation of clinical efficiency of personalised cancer treatment

    Permanent magnets under irradiation and radiocative alkali ion beam development for SPIRAL1

    Get PDF
    International audienceUp to now, eighteen Target Ion Source Systems (TISSs) have been built and used for the production of radioactive ion beams on SPIRAL 1 facility, based on the Isotope- Separator-On-Line (ISOL) method. The TISSs are composed of thick carbon targets and of fully permanentmagnet Electron Cyclotron Resonance Ion Sources (ECRISs) of the Nanogan III type. After irradiation and a decay period of two years, the irradiated TISSs are dismounted and if their magnetic fields are still suitable, the ECRIS are used with a new target. Thereby thirty-two runs have been performed using new or renewed TISSs. , After irradiation, the measured magnetic field sometimes reveals magnet damage. Our experience is reported here. In the second section, we present the progress on the NanoNaKE setup, which aims to extend the radioactive ion beams in SPIRAL 1 to the alkali elements, by connecting a surface-ionization source to the Nanogan III ECRIS via a compact 1+ ion beam line. The main issues and difficulties are discussed and the preliminary solutions are described

    MONOBOB II : Latest results of monocharged ions source for SPIRAL2 project

    Get PDF
    Original publication available at http://www.jacow.orgInternational audienceAmong the sources which can be installed in the radioactive ion production module of SPIRAL II, a singly-charged ECRIS has been chosen to produce ions from gaseous elements. Its characterization is under way on a test bench at GANIL. Extraction, transport and response time results are presented

    Treatment Efficacy, Clinical Utility, and Cost-Effectiveness of Multidisciplinary Biopsychosocial Rehabilitation Treatments for Persistent Low Back Pain: A Systematic Review

    Get PDF
    Study Design: Systematic review. Objectives: To review the current literature on the treatment efficacy, clinical utility, and cost-effectiveness of multidisciplinary biopsychosocial rehabilitation (MBR) for patients suffering from persistent (nonspecific) lower back pain (LBP) in relation to pain intensity, disability, health-related quality of life, and work ability/sick leave. Methods: We carried out a systematic search of Web of Science, Cochrane Library, PubMed Central, EMBASE, and PsycINFO for English- and German-language literature published between January 2010 and July 2017. Study selection consisted of exclusion and inclusion phases. After screening for duplication, studies were excluded on the basis of criteria covering study design, number of participants, language of publication, and provision of information about the intervention. All the remaining articles dealing with the efficacy, utility, or cost-effectiveness of intensive (more than 25 hours per week) MBR encompassing at least 3 health domains and cognitive behavioral therapy–based psychological education were included. Results: The search retrieved 1199 publications of which 1116 were duplicates or met the exclusion criteria. Seventy of the remaining 83 articles did not meet the inclusion criteria; thus 13 studies were reviewed. All studies reporting changes in pain intensity or disability over 12 months after MBR reported moderate effect sizes and/or p-values for both outcomes. The effects on health-related quality of life were mixed, but MBR substantially reduced costs. Overall MBR produced an enduring improvement in work ability despite controversy and variable results. Conclusions: MBR is an effective treatment for nonspecific LBP, but there is room for improvement in cost-effectiveness and impact on sick leave, where the evidence was less compelling

    Precise measurement of the Ds+D^+_s lifetime at Belle II

    Full text link
    We measure the lifetime of the Ds+D_s^+ meson using a data sample of 207 fb1^{-1} collected by the Belle II experiment running at the SuperKEKB asymmetric-energy e+ee^+ e^- collider. The lifetime is determined by fitting the decay-time distribution of a sample of 116×103116\times 10^3 Ds+ϕπ+D_s^+\rightarrow\phi\pi^+ decays. Our result is \tau^{}_{D^+_s} = (498.7\pm 1.7\,^{+1.1}_{-0.8}) fs, where the first uncertainty is statistical and the second is systematic. This result is significantly more precise than previous measurements.Comment: 7 pages, 4 figures, to be submitted to Physical Review Letter

    Measurement of the Λc+\Lambda_c^+ lifetime

    Full text link
    An absolute measurement of the Λc+\Lambda^{+}_c lifetime is reported using Λc+pKπ+\Lambda_c^+\rightarrow pK^-\pi^+ decays in events reconstructed from data collected by the Belle II experiment at the SuperKEKB asymmetric-energy electron-positron collider. The total integrated luminosity of the data sample, which was collected at center-of-mass energies at or near the Υ(4S)\Upsilon(4S) resonance, is 207.2~\mbox{fb}^{-1}. The result, τ(Λc+)=203.20±0.89(stat)±0.77(syst)\tau(\Lambda^{+}_c) = 203.20 \pm 0.89 \,\mathrm{(stat)} \pm 0.77 \,\mathrm{(syst)} fs, is the most precise measurement to date and is consistent with previous determinations.Comment: Accepted for publication in PR

    Search for an invisible ZZ^\prime in a final state with two muons and missing energy at Belle II

    Full text link
    The LμLτL_{\mu}-L_{\tau} extension of the standard model predicts the existence of a lepton-flavor-universality-violating ZZ^{\prime} boson that couples only to the heavier lepton families. We search for such a ZZ^\prime through its invisible decay in the process e+eμ+μZe^+ e^- \to \mu^+ \mu^- Z^{\prime}. We use a sample of electron-positron collisions at a center-of-mass energy of 10.58GeV collected by the Belle II experiment in 2019-2020, corresponding to an integrated luminosity of 79.7fb1^{-1}. We find no excess over the expected standard-model background. We set 90%\%-confidence-level upper limits on the cross section for this process as well as on the coupling of the model, which ranges from 3×1033 \times 10^{-3} at low ZZ^{\prime} masses to 1 at ZZ^{\prime} masses of 8GeV/c2GeV/c^{2}
    corecore