42 research outputs found

    Spatially resolved photoluminescence analysis of Se passivation and defect formation in CdSex_{x}Te1x_{1-x} thin films

    Full text link
    CdTe is the most commercially successful thin-film photovoltaic technology to date. The recent development of Se-alloyed CdSex_{x}Te1x_{1-x} layers in CdTe solar cells has led to higher device efficiencies, due to a lowered bandgap improving the photocurrent, improved voltage characteristics and longer carrier lifetimes. Evidence from cross-sectional electron microscopy is widely believed to indicate that Se passivates defects in CdSex_{x}Te1x_{1-x} solar cells, and that this is the reason for better lifetimes and voltages in these devices. Here, we utilise spatially resolved photoluminescence measurements of CdSex_{x}Te1x_{1-x} thin films on glass to study the effects of Se on carrier recombination in the material, isolated from the impact of conductive interfaces and without the need to prepare cross-sections through the samples. We find further evidence to support Se passivation of grain boundaries, but also identify an associated increase in below-bandgap photoluminescence that indicates the presence of Se-enhanced luminescent defects. Our results show that Se treatment, in tandem with Cl passivation, does increase radiative efficiencies. However, the simultaneous enhancement of defects within the grain interiors suggests that although it is overall beneficial, Se incorporation may still ultimately limit the maximum attainable efficiency of CdSex_{x}Te1x_{1-x} solar cells

    Histological basis of laminar MRI patterns in high resolution images of fixed human auditory cortex

    Get PDF
    Functional magnetic resonance imaging (fMRI) studies of the auditory region of the temporal lobe would benefit from the availability of image contrast that allowed direct identification of the primary auditory cortex, as this region cannot be accurately located using gyral landmarks alone. Previous work has suggested that the primary area can be identified in magnetic resonance (MR) images because of its relatively high myelin content. However, MR images are also affected by the iron content of the tissue and in this study we sought to confirm that different MR image contrasts did correlate with the myelin content in the grey matter and were not primarily affected by iron content as is the case in the primary visual and somatosensory areas. By imaging blocks of fixed post-mortem cortex in a 7 Tesla scanner and then sectioning them for histological staining we sought to assess the relative contribution of myelin and iron to the grey matter contrast in the auditory region. Evaluating the image contrast in T2*-weighted images and quantitative R2* maps showed a reasonably high correlation between the myelin density of the grey matter and the intensity of the MR images. The correlation with T1-weighted phase sensitive inversion recovery (PSIR) images was better than with the previous two image types, and there were clearly differentiated borders between adjacent cortical areas in these images. A significant amount of iron was present in the auditory region, but did not seem to contribute to the laminar pattern of the cortical grey matter in MR images. Similar levels of iron were present in the grey and white matter and although iron was present in fibres within the grey matter, these fibres were fairly uniformly distributed across the cortex. Thus we conclude that T1- and T2*-weighted imaging sequences do demonstrate the relatively high myelin levels that are characteristic of the deep layers in primary auditory cortex and allow it and some of the surrounding areas to be reliably distinguished

    Acid gases and aerosol measurements in the UK (1999–2015): regional distributions and trends

    Get PDF
    The UK Acid Gases and Aerosol Monitoring Network (AGANet) was established in 1999 (12 sites, increased to 30 sites from 2006), to provide long-term national monitoring of acid gases (HNO3, SO2, HCl) and aerosol components (NO3-, SO42-, Cl-, Na+, Ca2+, Mg2+). An extension of a low-cost denuder-filter pack system (DELTA) that is used to measure NH3 and NH4+ in the UK National Ammonia Monitoring Network (NAMN) provides additional monthly speciated measurements for the AGANet. A comparison of the monthly DELTA measurement with averaged daily results from an annular denuder system showed close agreement, while the sum of HNO3 and NO3- and the sum of NH3 and NH4+ from the DELTA are also consistent with previous filter pack determination of total inorganic nitrogen and total inorganic ammonium, respectively. With the exception of SO2 and SO42-, the AGANet provides for the first time the UK concentration fields and seasonal cycles for each of the other measured species. The largest concentrations of HNO3, SO2, and aerosol NO3- and SO42- are found in south and east England and smallest in western Scotland and Northern Ireland, whereas HCl are highest in the southeast, southwest and central England, that may be attributed to dual contribution from anthropogenic (coal combustion) and marine sources (reaction of sea salt with acid gases to form HCl). Na+ and Cl- are spatially correlated, with largest concentrations at coastal sites, reflecting a contribution from sea salt. Temporally, peak concentrations in HNO3 occurred in late winter and early spring attributed to photochemical processes. NO3- and SO42- have a spring maxima that coincides with the peak in concentrations of NH3 and NH4+, and are therefore likely attributable to formation of NH4NO3 and (NH4)2SO4 from reaction with higher concentrations of NH3 in spring. By contrast, peak concentrations of SO2, Na+ and Cl- during winter are consistent with combustion sources for SO2 and marine sources in winter for sea salt aerosol. Key pollutant events were captured by the AGANet. In 2003, a spring episode with elevated concentrations of HNO3 and NO3¬- was driven by meteorology and transboundary transport of NH4NO3 from Europe. A second, but smaller episode occurred in September 2014, with elevated concentrations of SO2, HNO3, SO42-, NO3- and NH4+ that was shown to be from the Icelandic Holuhraun volcanic eruptions. Since 1999, AGANet has shown substantial decrease in SO2 concentrations relative to HNO3 and NH3, consistent with estimated decline in UK emissions. At the same time, large reductions and changes in the aerosol components provides evidence of a shift in the particulate phase from (NH4)2SO4 to NH4NO3. The potential for NH4NO3 to release NH3 and HNO3 in warm weather, together with the surfeit of NH3 also means that a larger fraction of the reduced and oxidised N is remaining in the gas phase as NH3 and HNO3 as indicated by the increasing trend in ratios of NH3:NH4+ and HNO3:NO3- over the 16 year period. Due to different removal rates of the component species by wet and dry deposition, this change is expected to affect spatial patterns of pollutant deposition with consequences for sensitive habitats with exceedance of critical loads of acidity and eutrophication. The changes are also relevant for human health effects assessment, particularly in urban areas as NH4NO3 constitutes a significant fraction of fine particulate matter (< 2.5 µm) that are linked to increased mortality from respiratory and cardiopulmonary diseases

    Corporate Governance for Sustainability

    Get PDF
    The current model of corporate governance needs reform. There is mounting evidence that the practices of shareholder primacy drive company directors and executives to adopt the same short time horizon as financial markets. Pressure to meet the demands of the financial markets drives stock buybacks, excessive dividends and a failure to invest in productive capabilities. The result is a ‘tragedy of the horizon’, with corporations and their shareholders failing to consider environmental, social or even their own, long-term, economic sustainability. With less than a decade left to address the threat of climate change, and with consensus emerging that businesses need to be held accountable for their contribution, it is time to act and reform corporate governance in the EU. The statement puts forward specific recommendations to clarify the obligations of company boards and directors and make corporate governance practice significantly more sustainable and focused on the long term

    Long-Term Gene Therapy Causes Transgene-Specific Changes in the Morphology of Regenerating Retinal Ganglion Cells

    Get PDF
    Recombinant adeno-associated viral (rAAV) vectors can be used to introduce neurotrophic genes into injured CNS neurons, promoting survival and axonal regeneration. Gene therapy holds much promise for the treatment of neurotrauma and neurodegenerative diseases; however, neurotrophic factors are known to alter dendritic architecture, and thus we set out to determine whether such transgenes also change the morphology of transduced neurons. We compared changes in dendritic morphology of regenerating adult rat retinal ganglion cells (RGCs) after long-term transduction with rAAV2 encoding: (i) green fluorescent protein (GFP), or (ii) bi-cistronic vectors encoding GFP and ciliary neurotrophic factor (CNTF), brain-derived neurotrophic factor (BDNF) or growth-associated protein-43 (GAP43). To enhance regeneration, rats received an autologous peripheral nerve graft onto the cut optic nerve of each rAAV2 injected eye. After 5–8 months, RGCs with regenerated axons were retrogradely labeled with fluorogold (FG). Live retinal wholemounts were prepared and GFP positive (transduced) or GFP negative (non-transduced) RGCs injected iontophoretically with 2% lucifer yellow. Dendritic morphology was analyzed using Neurolucida software. Significant changes in dendritic architecture were found, in both transduced and non-transduced populations. Multivariate analysis revealed that transgenic BDNF increased dendritic field area whereas GAP43 increased dendritic complexity. CNTF decreased complexity but only in a subset of RGCs. Sholl analysis showed changes in dendritic branching in rAAV2-BDNF-GFP and rAAV2-CNTF-GFP groups and the proportion of FG positive RGCs with aberrant morphology tripled in these groups compared to controls. RGCs in all transgene groups displayed abnormal stratification. Thus in addition to promoting cell survival and axonal regeneration, vector-mediated expression of neurotrophic factors has measurable, gene-specific effects on the morphology of injured adult neurons. Such changes will likely alter the functional properties of neurons and may need to be considered when designing vector-based protocols for the treatment of neurotrauma and neurodegeneration

    The genetic architecture of growth and fillet traits in farmed Atlantic salmon (Salmo salar)

    Get PDF
    BACKGROUND: Performance and quality traits such as harvest weight, fillet weight and flesh color are of economic importance to the Atlantic salmon aquaculture industry. The genetic factors underlying these traits are of scientific and commercial interest. However, such traits are typically polygenic in nature, with the number and size of QTL likely to vary between studies and populations. The aim of this study was to investigate the genetic basis of several growth and fillet traits measured at harvest in a large farmed salmon population by using SNP markers. Due to the marked heterochiasmy in salmonids, an efficient two-stage mapping approach was applied whereby QTL were detected using a sire-based linkage analysis, a sparse SNP marker map and exploiting low rates of recombination, while a subsequent dam-based analysis focused on the significant chromosomes with a denser map to confirm QTL and estimate their position. RESULTS: The harvest traits all showed significant heritability, ranging from 0.05 for fillet yield up to 0.53 for the weight traits. In the sire-based analysis, 1695 offspring with trait records and their 20 sires were successfully genotyped for the SNPs on the sparse map. Chromosomes 13, 18, 19 and 20 were shown to harbor genome-wide significant QTL affecting several growth-related traits. The QTL on chr. 13, 18 and 20 were detected in the dam-based analysis using 512 offspring from 10 dams and explained approximately 6–7 % of the within-family variation in these traits. CONCLUSIONS: We have detected several QTL affecting economically important complex traits in a commercial salmon population. Overall, the results suggest that the traits are relatively polygenic and that QTL tend to be pleiotropic (affecting the weight of several components of the harvested fish). Comparison of QTL regions across studies suggests that harvest trait QTL tend to be relatively population-specific. Therefore, the application of marker or genomic selection for improvement in these traits is likely to be most effective when the discovery population is closely related to the selection candidates (e.g. within-family genomic selection). ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12863-015-0215-y) contains supplementary material, which is available to authorized users

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore