78 research outputs found

    TraitBank : practical semantics for organism attribute data

    Get PDF
    © IOS Press and The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Semantic Web 7 (2016): 577-588, doi:10.3233/SW-150190.Encyclopedia of Life (EOL) has developed TraitBank (http://eol.org/traitbank), a new repository for organism attribute (trait) data. TraitBank aggregates, manages and serves attribute data for organisms across the tree of life, including life history characteristics, habitats, distributions, ecological relationships and other data types. We describe how TraitBank ingests and manages these data in a way that leverages EOL’s existing infrastructure and semantic annotations to facilitate reasoning across the TraitBank corpus and interoperability with other resources. We also discuss TraitBank’s impact on users and collaborators and the challenges and benefits of our lightweight, scalable approach to the integration of biodiversity data.Support for TraitBank was provided by the Alfred P. Sloan Foundation, the Smithsonian Institution, the Marine Biological Laboratory, and the John D. and Catherine T. MacArthur Foundation

    Innovative interstellar explorer

    Get PDF
    An interstellar "precursor" mission has been under discussion in the scientific community for at least 30 years. Fundamental scientific questions about the interaction of the Sun with the interstellar medium can only be answered with in situ measurements that such a mission can provide. The Innovative Interstellar Explorer (IIE) and its use of Radioisotope Electric Propulsion (REP) is being studied under a NASA "Vision Mission" grant. Speed is provided by a combination of a high-energy launch, using current launch vehicle technology, a Jupiter gravity assist, and long-term, low-thrust, continuous acceleration provided by an ion thruster running off electricity provided by advanced radioisotope electric generators. A payload of ten instruments with an aggregate mass of ~35 kg and requiring ~30 W has been carefully chosen to address the compelling science questions. The nominal 20-day launch window opens on 22 October 2014 followed by a Jupiter gravity assist on 5 February 2016. The REP system accelerates the spacecraft to a "burnout" speed of 7.8 AU per year at 104 AU on 13 October 2032 (Voyager 1's current speed is ~3.6 AU/yr). The spacecraft will return at least 500 bits per second from at least 200 AU ~30 years after launch. Additional (backup) launch opportunities occur every 13 months to early 2018. In addition to addressing basic heliospheric science, the mission will ensure continued information on the far-heliospheric galactic cosmic ray population after the Voyagers have fallen silent and as the era of human Mars exploration begins

    Innovative Interstellar Explorer: Radioisotope Propulsion to the Interstellar Medium

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77355/1/AIAA-2005-4272-245.pd

    Meeting report : GBIF hackathon-workshop on Darwin Core and sample data (22-24 May 2013)

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Standards in Genomic Sciences 9 (2014): 585-598, doi:10.4056/sigs.4898640.The workshop-hackathon was convened by the Global Biodiversity Information Facility (GBIF) at its secretariat in Copenhagen over 22-24 May 2013 with additional support from several projects (RCN4GSC, EAGER, VertNet, BiSciCol, GGBN, and Micro B3). It assembled a team of experts to address the challenge of adapting the Darwin Core standard for a wide variety of sample data. Topics addressed in the workshop included 1) a review of outstanding issues in the Darwin Core standard, 2) issues relating to publishing of biodiversity data through Darwin Core Archives, 3) use of Darwin Core Archives for publishing sample and monitoring data, 4) the case for modifying the Darwin Core Text Guide specification to support many-to-many relations, and 5) the generalization of the Darwin Core Archive to a “Biodiversity Data Archive”. A wide variety of use cases were assembled and discussed in order to inform further developments.We gratefully acknowledge support from the Global Biodiversity Information Facility (GBIF), from the Global Genome Biodiversity Network (GGBN), from the EU 7FP Biodiversity, Bioinformatics, Biotechnology project (Micro B3), and from the US National Science Foundation (NSF) through the following grants: DBI-0840989 [Research Coordination Network for the Ge-nomic Standards Consortium (RCN4GSC)], IIS-1255035 [EAGER: An Interoperable Information Infrastructure for Biodiversity Research (I3BR)], ABI Development: Collaborative Research: VertNet, a New Model for Bio-diversity Networks (DBI-1062193), and Collaborative Research: BiSciCol Tracker: Towards a tagging and tracking infrastructure for biodiversity science collec-tions (DBI-0956426)

    ENVIRONMENTS and EOL : identification of Environment Ontology terms in text and the annotation of the Encyclopedia of Life

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bioinformatics 31 (2015): 1872-1874, doi:10.1093/bioinformatics/btv045.The association of organisms to their environments is a key issue in exploring biodiversity patterns. This knowledge has traditionally been scattered, but textual descriptions of taxa and their habitats are now being consolidated in centralized resources. However, structured annotations are needed to facilitate large-scale analyses. Therefore, we developed ENVIRONMENTS, a fast dictionary-based tagger capable of identifying Environment Ontology (ENVO) terms in text. We evaluate the accuracy of the tagger on a new manually curated corpus of 600 Encyclopedia of Life (EOL) species pages. We use the tagger to associate taxa with environments by tagging EOL text content monthly, and integrate the results into the EOL to disseminate them to a broad audience of users.The Encyclopedia Of Life Rubenstein Fellows Program [CRDF EOL-33066-13/E33066], the LifeWatchGreece Research Infrastructure [384676-94/GSRT/ NSRF(C&E)] and the Novo Nordisk Foundation Center for Protein Research [NNF14CC0001]

    Contrasted Effects of Diversity and Immigration on Ecological Insurance in Marine Bacterioplankton Communities

    Get PDF
    The ecological insurance hypothesis predicts a positive effect of species richness on ecosystem functioning in a variable environment. This effect stems from temporal and spatial complementarity among species within metacommunities coupled with optimal levels of dispersal. Despite its importance in the context of global change by human activities, empirical evidence for ecological insurance remains scarce and controversial. Here we use natural aquatic bacterial communities to explore some of the predictions of the spatial and temporal aspects of the ecological insurance hypothesis. Addressing ecological insurance with bacterioplankton is of strong relevance given their central role in fundamental ecosystem processes. Our experimental set up consisted of water and bacterioplankton communities from two contrasting coastal lagoons. In order to mimic environmental fluctuations, the bacterioplankton community from one lagoon was successively transferred between tanks containing water from each of the two lagoons. We manipulated initial bacterial diversity for experimental communities and immigration during the experiment. We found that the abundance and production of bacterioplankton communities was higher and more stable (lower temporal variance) for treatments with high initial bacterial diversity. Immigration was only marginally beneficial to bacterial communities, probably because microbial communities operate at different time scales compared to the frequency of perturbation selected in this study, and of their intrinsic high physiologic plasticity. Such local “physiological insurance” may have a strong significance for the maintenance of bacterial abundance and production in the face of environmental perturbations

    A C19MC-LIN28A-MYCN Oncogenic Circuit Driven by Hijacked Super-enhancers Is a Distinct Therapeutic Vulnerability in ETMRs: A Lethal Brain Tumor

    Get PDF
    © 2019 Elsevier Inc. Embryonal tumors with multilayered rosettes (ETMRs) are highly lethal infant brain cancers with characteristic amplification of Chr19q13.41 miRNA cluster (C19MC) and enrichment of pluripotency factor LIN28A. Here we investigated C19MC oncogenic mechanisms and discovered a C19MC-LIN28A-MYCN circuit fueled by multiple complex regulatory loops including an MYCN core transcriptional network and super-enhancers resulting from long-range MYCN DNA interactions and C19MC gene fusions. Our data show that this powerful oncogenic circuit, which entraps an early neural lineage network, is potently abrogated by bromodomain inhibitor JQ1, leading to ETMR cell death. Sin-Chan et al. uncover a C19MC-LIN28A-MYCN super-enhancer-dependent oncogenic circuit in embryonal tumors with multilayered rosettes (ETMRs). The circuit entraps an early neural lineage network to sustain embryonic epigenetic programming and is vulnerable to bromodomain inhibition, which promotes ETMR cell death
    corecore