15 research outputs found

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Catálogo Taxonômico da Fauna do Brasil: setting the baseline knowledge on the animal diversity in Brazil

    Get PDF
    The limited temporal completeness and taxonomic accuracy of species lists, made available in a traditional manner in scientific publications, has always represented a problem. These lists are invariably limited to a few taxonomic groups and do not represent up-to-date knowledge of all species and classifications. In this context, the Brazilian megadiverse fauna is no exception, and the Catálogo Taxonômico da Fauna do Brasil (CTFB) (http://fauna.jbrj.gov.br/), made public in 2015, represents a database on biodiversity anchored on a list of valid and expertly recognized scientific names of animals in Brazil. The CTFB is updated in near real time by a team of more than 800 specialists. By January 1, 2024, the CTFB compiled 133,691 nominal species, with 125,138 that were considered valid. Most of the valid species were arthropods (82.3%, with more than 102,000 species) and chordates (7.69%, with over 11,000 species). These taxa were followed by a cluster composed of Mollusca (3,567 species), Platyhelminthes (2,292 species), Annelida (1,833 species), and Nematoda (1,447 species). All remaining groups had less than 1,000 species reported in Brazil, with Cnidaria (831 species), Porifera (628 species), Rotifera (606 species), and Bryozoa (520 species) representing those with more than 500 species. Analysis of the CTFB database can facilitate and direct efforts towards the discovery of new species in Brazil, but it is also fundamental in providing the best available list of valid nominal species to users, including those in science, health, conservation efforts, and any initiative involving animals. The importance of the CTFB is evidenced by the elevated number of citations in the scientific literature in diverse areas of biology, law, anthropology, education, forensic science, and veterinary science, among others

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Processamento digital de imagens TM do Landsat-5 da região de Belém-Benevides (PA), através do SITIM-150

    No full text
    The IBGE Foundation and the Government of the Para State in Brasil represented by Secretary's Office for Industry, Trade and Mining (SEICOM), are executing studies for the elaboration of the Masterplan on Mining in Belim Metropolitan Region. In the first stage of this studies will be identified the environment systems by the correlation between nature - including rocks, relief, vegetation, soils, water and air -, and society - including land use and socio­economics activities. The basic materials used for obtainable these informations are the images from Thematic Mapper sensor of the LANDSAT-5 satellyte, on the bands 3, 4 and 5. The images was analysed by Digital Processing, utilizing the hardware and software of the Images Treatement Systems (SITIM), developed by INPE/ENGESPAGO society, on the laboratories of the Hidroclimatology and Remote Sense Center of Amazonia (CHSRA) of the Superintendence for Development of Amazonia (SUDAM). This Work describe the digital processing tecniches utilized, whose objective was to get better the quality of the images to the visual interpretation and to establish identification patterns of the degraded areas by mining in the Belim Metropolitan Region and neigbornhood. The tecniches utilized was: image transference tape-hard disk, dysplay of images, color compositions, and relief of images including stretch, spacial filtering and spectral rotatioh. We conclude that the best image for our objectives was the color composition 5R 4G 3B reliefed by linear stretch.Pages: 167-17

    Neotectônica e morfogênese da região de Carolina (Ma, To), bacia do Paranaíba

    No full text
    O esclarecimento das características geométrico-cinemáticas das estruturas bem como da sua evolução paleo e neotectônica como base para o entendimento da morfogênese da aqui denominada Região de Carolina, foram os principais objetivos desta pesquisa. Esta região localiza-se entre os Paralelos 6°30' e 7°30'S e Meridianos 47°00' e 48°00' WGr., com 12.000 Km2 de área, envolvendo parte dos estados do Maranhão e Tocantins, dividida ao meio pelo rio Tocantins, sendo a cidade de Carolina, na porção Centro-Sul, o principal núcleo urbano. Geologicamente, insere-se totalmente nos domínios da Bacia do Parnaíba, e no mapa geológico (escala 1:250.000) encontram-se representadas as formações Pedra de Fogo (Permiano), Motuca (Permo-Triássico), Sambaíba (Triássico), a Formação Mosquito (Juro-Triássico), e rochas Intrusivas Básicas do início do Cretáceo. O Cenozóico inicia-se com as Coberturas Sedimentares Paleogênicas, seguidas por uma seqüência de leques aluviais da Formação Rio Farinha, aqui definida, de suposta idade miocênica. No Quaternário posicionam-se as Coberturas Sedimentares Pleistocênicas e as Aluviões Holocênicas. Dentre as estruturas investigadas o Cinturão Transcorrente Tianguá-Carolina compreende feixes de falhas transcorrentes dextrais orientadas N70-80E, que interagem com falhas normais neotectônicas de direção N40-60W, compondo um mosaico de romboedros transtensivos, localmente transpressivos, concretizados na paisagem sob a forma de altos e baixos estruturais. Secundariamente ocorrem falhas transcorrentes dextrais e sinistrais com direção N50- 60E. A deformação é caracterizada por cisalharnento simples e comportamento rúptil, sendo descritos e caracterizados quatro sistemas transcorrentes e duas zonas transtensivas. O Cinturão Distensivo Tocantins-Araguaia compreende feixes de falhas normais ou oblíquas dextrais e sinistrais de orientação submeridiana, evidenciando deformação por cisalhamento simples e comportamento rúptil, subdividido em três sistemas distensivos. Foram identificados dois ciclos ou eventos de erosão que constituíram superfícies de aplainamento de idades paleogênica e neogênica, respectivamente. O relacionamento das formas de relevo com as superfícies de aplainamento e o posicionamento desses conjuntos em relação aos cinturões transcorrente e distensivo compõem arranjos de relevo que permitiram que se compartimentasse a paisagem das áreas em processo de degradação em dois Domínios Morfoestniturais, três Regiões Geomorfológicas, oito Unidades Geomorfológicas compartimentadas nos Tipos de Modelados de aplainamento e dissecação, estes identificados pela forma do topo (tabular, convexo e aguçado) e pela intensidade do aprofundamento da drenagem. As áreas com relevos em processo de agradação corespondem ao Domínio das Planícies Aluvionares onde ocorre a Unidade Planície do Tocantins. Na evolução tectônica dessa região reconhecem-se três eventos cinemáticos. O primeiro caracteriza-se por deformação em regime extensional durante o Juro-Triássico, com σ1 - 63/S35W; σ2 - 10/N85W; σ3 - 16/N12E. No segundo evento ocorreu deformação em regime extensional durante o Cretáceo Inferior, com σ1 = 68/N52W; σ2 = 17/S12E; σ3 = 12/N73E. O terceiro evento é marcado por deformação em regime transcorrente a partir do Mioceno (Neotectônica). As orientações aproximadas dos tensores foram: σ1 = 3/S55E; σ2 = 85/N38E; σ3 = 6/S35W. O principais fatores responsáveis pelo modelamento das "Mesas de Carolina", são as falhas normais neotectônicas de direção N45-50W, desenvolvidas nas áreas transtensivas produzidas pela interação entre os feixes de falhas do Cinturão Transcorrente Tianguá-Carolina; as falhas normais do Cinturão Distensivo Tocantis-Araguaia, notadamente no lado oesta da área pesquisada; a dissecação estrutural da Superfície de Aplainamento Paleogênica ao longo dos citados feixes de falhas.IBGE - Instituto Brasileiro de Geografia e Estatístic

    Compartimentação morfotectônica do interflúvio Solimões-Negro

    No full text
    From the morphostuctural and morphotectonic analysis integrated to the informations of remote sensing images, litoestratighaphy , geomorfology , the seismic data and field investigations was defined the neotectonic structuration and its influence in the elaboration of the relief forms and drainage net during the Upper Tertiary and Quaternary. This relation is shown through the morphotectonic compartimentation of the Solimões-Negro watershed, subject of this research (SA.20-Manaus Sheet). The discussions concentrated in the area of the cenozoics covers which overlay the east and west borders of the Solimões and Amazon paleozoics sedimentary basins, respectively. This area occupies about 290 000 km2, and is situated between the parallels 0° and 4° S and meridians 60° and 66° WGr, in the Amazonian region, involving parcels of Amazon and Roraima States. The geologic units formed during, or imediatelly after, the implantation of the neotectonic regimen are represented by: 1) the Içá Formation formed after the Miocene, probably of the Plio-Pleistocene age; 2) the Pleistocenics Terraces; 3) the Holocenics Terraces; 4) the inundatable watersheds areas of holocenic age; and 5) the Holocenics Alluviums. The modelling of the landscape for the drainage net evidences a relief compartimentation at plains systems, linked to the actual fluvial dynamics, and depressions, normally leveled by a planing surface formed in the Middle Pleistocene, in retaken by erosion, and preserved on tabular watershed. The neotectonic structuration has a direct relationship with the regeneration of the discontinuities of the paleotectonic structuration, that is, with the resurgent tectonic . This old estructuration is defined by: 1) Tacutu Lineament of NE-SO orientation, that show continuity to the northwest quadrant of the area; 2) the Madeira Lineament, also of NE-SO orientation that section the Southeastern quadrant; 3) the Purus Arc with NW orientation that establishes the limits between the Solimões and Amazon basin; e (4) minors lineaments as the Juruá and the Japurá ones, of E-O direction, defined outside of the domains of the research area. The neotectonic tensions field was alliviated through two kinematics pulses of essentially transcorrent nature. In the first pulse, occurred immediately after the inversion of the Amazonian Occidental drainage for east, had established the main corridors of drainage in the predominant NE-SO direction through the northeast of Amazonas and Roraima states in the brasilian territory, reaching the Guyana Republic and the Atlantic Ocean through rift valley of the Tacutu. The second one, predominantly transtensive, occurred in the Upper Pleistocene /Holocene, provoked the redirectioning of this system for the Amazonas hidrographic basin, and answers for the actual configuration of the relief and drainage net. The Relief Systems are differentiate for the degree of development of the drainage net, showing a evident gradation from the most evolued to the less evolued, that is reflected in the configuration of the watershed and its dimensiona, and that register the history of the implantation of the neotectonic structural picture and its geometric and kinematic differentiations. This register is represented through five morfotectonics compartments, called: Juruá River - Purus River Tanspressive Compartment; Madeira River - Purus River Transcorrent Compartment; Negro River- Japurá River Trancorrent Compartment; Negro River - Solimões River Trantensive Compartment; and the Branco River- Negro River Transtensive Compartment. The morphostructural and morphotectonic evolution occurred from southwest to northeast. So, the drainage net show best developed in the Juruá River — Madeira River Compartment; it is in development in the central zone formed by the Madeira River - Purus River, Negro River-Japurá River and Negro River- Solimões River Compartments; and show a initial stage of development in the Negro River- Branco River Compartment. In the northeast border of the Negro River Japurá River Transtensive Compartment, the development of the drainage net is composed, showing features of initial stage, as the amorphous and multibasinal pattern, with other typicals features of drainage net in development. The structures of the Juruá River Purus River Compartment are generated by inverse faults in the Upper Tertiary. In the the Madeira River - Purus River and Negro River — Japurá River compartments they are dextrals directional faults with component of oblique slip, probably of the reverse type in the Tertiary Superior and normal in the Pleistocene; in the Negro River - Solimões River Compartment they are mainly normal and oblique-dextrais types in the Upper Pleistocene. The Negro River- Branco River Compartment configures a wedge structure with oblique movement in the northwest and east borders, and extensional in its central zone, with evolution initiated in the Upper Pleistocene extending to the Holocene. Recent activity of some of these faults is marked by seismic events with intensities that arrive 5,5 mB.PETROBRAS - Petróleo Brasileiro S.A.FNDCT - Fundo Nacional de Desenvolvimento Científico e TecnológicoFINEP - Financiadora de Estudos e ProjetosA partir da análise morfoestrutural e morfotectônica integrada às informações constantes das imagens dos sensores remotos, da litoestratigrafia, da geomorfologia, dos dados sísmicos e dos dados de campo foi definida a estruturação neotectônica e a sua influência na elaboração das formas de relevo e da rede de drenagem durante o terciário Superior e o Quaternário. Esta estruturação foi delineada através da compartimentação morfotectônica do Interflúvio Solimões-Negro, objetivo desta pesquisa. As discussões concentram-se na área de distribuição das coberturas cenozóicas superposta às bordas leste e oeste das bacias sedimentares paleozóicas do Solimões e Amazonas, respectivamente. Esta área ocupa cerca de 290 000 Km²,e localiza-se entre os paralelos 0° e 4°S e meridianos 60°WGr, na região amazônica, envolvendo principalmente o Estado do Amazonas e parcela do Estado de Roraima. As unidades geológicas formadas durante ou após a implantação do regime neotectônico estão representadas: 1) pela Formação Içá de idade pós-miocênica provavelmente plio-pleistocênica; 2) por Terraços Pleistocênicos; 3) por Terraços Holocênicos; 4) pelas Áreas Inundáveis Interfluviais Holocênicas; e 5) pelos Aluviões Holocênicos. O modelamento da paisagem pela rede de drenagem evidencia uma compartimentação do relevo em sistemas de planícies, ligados à dinâmica fluvial atual,e em sistemas de interflúvios tabulares normalmente nivelados por uma superfície de aplainamento formada na metade do Pleistoceno, em retomada de erosão. A estruturação neotectônica tem um relacionamento direto com a regeneração das descontinuidades pertencentes à estruturação paleotectônica, isto é, com a tectônica ressurgente. Esta estruturação antiga é definida por:1) Lineamento Tacutu de orientação NE-SW, que se projeta para o quadrante noroeste da área; 2) o Lineamento Madeira, também de orientação NE-SW que secciona o quadrante sudeste;3) o Arco de Purus com orientação NW-SE que estabelece os limites entra as bacias do Amazonas e Solimões; (4) lineamentos menores como Juruá e o Japurá, de direção E-W, definidos fora dos domínios da área pesquisada. A atuação do campo de tensões neotectônico foi aliviada através de dois pulsos de movimentação cinemática de natureza essencialmente transcorrente. No primeiro pulso ocorrido imediatamente após a inversão para leste da rede de drenagem da Amazônia Ocidental, que corria para oeste, estabeleceram-se os principais corredores de drenagem na direção predominante NE-SW através do nordeste do Amazonas, Roraima e Guyana, alcançando o Oceano Atlântico através do rift valley do Tacutu. O segundo, predominantemente transtensivo, ocorreu no Pleistoceno Superior - Holoceno, provocou o redirecionamento desse sistema para o Amazonas, e responde pela configuração do relevo e pelo desenho da rede de drenagem tal como se mostra atualmente. Os sistemas de Relevo diferenciam-se, fundamentalmente, pelo grau de desenvolvimento da rede de drenagem, havendo uma nítida gradação da mais evoluída para menos evoluída, que se reflete na distribuição dos interflúvios e nas suas dimensões, e que registram a história da implantação do quadro estrutural neoctectônico e suas diferenciações geométricas e cinemáticas. Este registro encontra-se especializado em cinco compartimentos morfotectônicos, denominados: Compartimento Transpressivo Rio Juruá-Rio Purus; Compartimento Transcorrente Rio Madeira-Rio Purus; Compartimento Transcorrente Rio Negro- Rio Japurá; Compartimento Transtensivo Rio Negro- Rio Solimões; e o Compartimento Transtensivo Rio Branco- Rio Negro. A evolução morfoestrutural e morfotectônica se deu de sudoeste para nordeste, de modo que a rede de drenagem encontra-se bem desenvolvida no Compartimento Rio Juruá-Rio Purus; em desenvolvimento na zona central formada pelos Compartimentos Rio Madeira-Rio Purus; Rio Negro- Rio Japurá e Rio Negro - Rio Solimões; encontra-se em estágio inicial de desenvolvimento no Compartimento Rio Branco- Rio Negro. A nordeste do Compartimento Transtensivo Ri Negro- Rio Japurá, a rede de drenagem é composta, apresentado tanto feições de estágio inicial como os padrões amorfo e multibasinal, quanto outras feições típicas de rede de drenagem em desenvolvimento. As estruturas do Compartimento Rio Juruá- Rio Purus compreendem falhas inversas geradas no Terciário Superior; as dos compartimentos Rio Madeira-Rio Purus e Rio Negro- Rio Japurá são falhas direcionadas dextrais com componente de rejeito oblíquo, provavelmente inverso no Terciário Superior e normal no Pleistoceno; no Compartimento Rio Negro-Rio Solimões são principalmente falhas normais e de rejeito oblíquo dextral do Pleistoceno Superior; e no Compartimento Rio Branco - Rio Negro configura-se uma estrutura em cunha com movimentação oblíqua nas bordas noroeste e leste, e extensional na sua zonal central, com evolução iniciada no Pleistoceno Superior estendendo-se ao Holoceno. Atividades recentes de algumas dessas falhas são marcadas por eventos sísmicos de intensidade que chegam a 5.5 mB

    A Potential SARS-CoV-2 Variant of Interest (VOI) Harboring Mutation E484K in the Spike Protein Was Identified within Lineage B.1.1.33 Circulating in Brazil

    No full text
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in Brazil was dominated by two lineages designated as B.1.1.28 and B.1.1.33. The two SARS-CoV-2 variants harboring mutations at the receptor-binding domain of the Spike (S) protein, designated as lineages P.1 and P.2, evolved from lineage B.1.1.28 and are rapidly spreading in Brazil. Lineage P.1 is considered a Variant of Concern (VOC) because of the presence of multiple mutations in the S protein (including K417T, E484K, N501Y), while lineage P.2 only harbors mutation S:E484K and is considered a Variant of Interest (VOI). On the other hand, epidemiologically relevant B.1.1.33 deriving lineages have not been described so far. Here we report the identification of a new SARS-CoV-2 VOI within lineage B.1.1.33 that also harbors mutation S:E484K and was detected in Brazil between November 2020 and February 2021. This VOI displayed four non-synonymous lineage-defining mutations (NSP3:A1711V, NSP6:F36L, S:E484K, and NS7b:E33A) and was designated as lineage N.9. The VOI N.9 probably emerged in August 2020 and has spread across different Brazilian states from the Southeast, South, North, and Northeast regions
    corecore