391 research outputs found

    Bifurcations in annular electroconvection with an imposed shear

    Full text link
    We report an experimental study of the primary bifurcation in electrically-driven convection in a freely suspended film. A weakly conducting, submicron thick smectic liquid crystal film was supported by concentric circular electrodes. It electroconvected when a sufficiently large voltage VV was applied between its inner and outer edges. The film could sustain rapid flows and yet remain strictly two-dimensional. By rotation of the inner electrode, a circular Couette shear could be independently imposed. The control parameters were a dimensionless number R{\cal R}, analogous to the Rayleigh number, which is V2\propto V^2 and the Reynolds number Re{\cal R}e of the azimuthal shear flow. The geometrical and material properties of the film were characterized by the radius ratio α\alpha, and a Prandtl-like number P{\cal P}. Using measurements of current-voltage characteristics of a large number of films, we examined the onset of electroconvection over a broad range of α\alpha, P{\cal P} and Re{\cal R}e. We compared this data quantitatively to the results of linear stability theory. This could be done with essentially no adjustable parameters. The current-voltage data above onset were then used to infer the amplitude of electroconvection in the weakly nonlinear regime by fitting them to a steady-state amplitude equation of the Landau form. We show how the primary bifurcation can be tuned between supercritical and subcritical by changing α\alpha and Re{\cal R}e.Comment: 17 pages, 12 figures. Submitted to Phys. Rev. E. Minor changes after refereeing. See also http://mobydick.physics.utoronto.c

    Structure and Dynamics of Superconducting NaxCoO(2) Hydrate and Its Unhydrated Analog

    Full text link
    Neutron scattering has been used to investigate the crystal structure and lattice dynamics of superconducting Na0.3CoO2 1.4(H/D)2O, and the parent Na0.3CoO2 material. The structure of Na0.3CoO2 consists of alternate layers of CoO2 and Na and is the same as the structure at higher Na concentrations. For the superconductor, the water forms two additional layers between the Na and CoO2, increasing the c-axis lattice parameter of the hexagonal P63/mmc space group from 11.16 A to 19.5 A. The Na ions are found to occupy a different configuration from the parent compound, while the water forms a structure that replicates the structure of ice. Both types of sites are only partially occupied. The CoO2 layer in these structures is robust, on the other hand, and we find a strong inverse correlation between the CoO2 layer thickness and the superconducting transition temperature (TC increases with decreasing thickness). The phonon density-of-states for Na0.3CoO2 exhibits distinct acoustic and optic bands, with a high-energy cutoff of ~100 meV. The lattice dynamical scattering for the superconductor is dominated by the hydrogen modes, with librational and bending modes that are quite similar to ice, supporting the structural model that the water intercalates and forms ice-like layers in the superconductor.Comment: 14 pages, 7 figures, Phys. Rev. B (in press). Minor changes + two figures removed as requested by refere

    Low-temperature specific heat and thermal conductivity of glycerol

    Full text link
    We have measured the thermal conductivity of glassy glycerol between 1.5 K and 100 K, as well as the specific heat of both glassy and crystalline phases of glycerol between 0.5 K and 25 K. We discuss both low-temperature properties of this typical molecular glass in terms of the soft-potential model. Our finding of an excellent agreement between its predictions and experimental data for these two independent measurements constitutes a robust proof of the capabilities of the soft-potential model to account for the low-temperature properties of glasses in a wide temperature range.Comment: 4 pages, 3 figures. To be published in Phys. Rev. B (2002

    Anaerobic Carbon Monoxide Dehydrogenase Diversity in the Homoacetogenic Hindgut Microbial Communities of Lower Termites and the Wood Roach

    Get PDF
    Anaerobic carbon monoxide dehydrogenase (CODH) is a key enzyme in the Wood-Ljungdahl (acetyl-CoA) pathway for acetogenesis performed by homoacetogenic bacteria. Acetate generated by gut bacteria via the acetyl-CoA pathway provides considerable nutrition to wood-feeding dictyopteran insects making CODH important to the obligate mutualism occurring between termites and their hindgut microbiota. To investigate CODH diversity in insect gut communities, we developed the first degenerate primers designed to amplify cooS genes, which encode the catalytic (β) subunit of anaerobic CODH enzyme complexes. These primers target over 68 million combinations of potential forward and reverse cooS primer-binding sequences. We used the primers to identify cooS genes in bacterial isolates from the hindgut of a phylogenetically lower termite and to sample cooS diversity present in a variety of insect hindgut microbial communities including those of three phylogenetically-lower termites, Zootermopsis nevadensis, Reticulitermes hesperus, and Incisitermes minor, a wood-feeding cockroach, Cryptocercus punctulatus, and an omnivorous cockroach, Periplaneta americana. In total, we sequenced and analyzed 151 different cooS genes. These genes encode proteins that group within one of three highly divergent CODH phylogenetic clades. Each insect gut community contained CODH variants from all three of these clades. The patterns of CODH diversity in these communities likely reflect differences in enzyme or physiological function, and suggest that a diversity of microbial species participate in homoacetogenesis in these communities

    CONFIDENCE dissemination meeting: summary on the scenario-based workshop

    Get PDF
    The CONFIDENCE dissemination workshop “Coping with uncertainties for improved modelling and decision making in nuclear emergencies” was held in December 2–5, 2019 (Bratislava, Slovak Republic). About 90 scientists and decision makers attended the workshop. The dissemination workshop allowed the presentation of the CONFIDENCE project results, demonstration of the applicability of the developed methods and tools in interactive discussion sessions and the collection of feedback from the participants. The results were disseminated not only in the form of presentations and posters but also through interactive workshops where all participants were involved in round table working groups. A fictive accidental release scenario taking place at a nuclear power plant was developed and used by each work package in the workshop to provide the basis for interactive sessions and discussions

    Convergent validity and inter-rater reliability of a lower-limb multimodal physical function assessment in community-dwelling older adults

    Get PDF
    Introduction: Lower-limb physical function declines with age and contributes to a greater difficulty in performing activities of daily living. Existing assessments of lower-limb function assess one dimension of movement in isolation or are not time-efficient, which discourages their use in community and clinical settings. We aimed to address these limitations by assessing the inter-rater reliability and convergent validity of a new multimodal functional lower-limb assessment (FLA).Methods: FLA consists of five major functional movement tasks (rising from a chair, walking gait, stair ascending/descending, obstacle avoidance, and descending to a chair) performed consecutively. A total of 48 community-dwelling older adults (32 female participants; age: 71 ± 6 years) completed the FLA as well as timed up-and-go, 30-s sit-to-stand, and 6-min walk tests.Results: Slower FLA time was correlated with a slower timed up-and-go test (ρ = 0.70), less sit-to-stand repetitions (ρ = −0.65), and a shorter distance in the 6-min walk test (ρ = −0.69; all, p < 0.001). Assessments by two raters were not different (12.28 ± 3.86 s versus 12.29 ± 3.83 s, p = 0.98; inter-rater reliability ρ = 0.993, p < 0.001) and were statistically equivalent (via equivalence testing). Multiple regression and relative weights analyses demonstrated that FLA times were most predicted by the timed up-and-go performance [adjusted R2 = 0.75; p < 0.001; raw weight 0.42 (95% CI: 0.27, 0.53)].Discussion: Our findings document the high inter-rater reliability and moderate-strong convergent validity of the FLA. These findings warrant further investigation into the predictive validity of the FLA for its use as an assessment of lower-limb physical function among community-dwelling older adults

    On the Coupling Time of the Heat-Bath Process for the Fortuin–Kasteleyn Random–Cluster Model

    Get PDF
    We consider the coupling from the past implementation of the random-cluster heat-bath process, and study its random running time, or coupling time. We focus on hypercubic lattices embedded on tori, in dimensions one to three, with cluster fugacity at least one. We make a number of conjectures regarding the asymptotic behaviour of the coupling time, motivated by rigorous results in one dimension and Monte Carlo simulations in dimensions two and three. Amongst our findings, we observe that, for generic parameter values, the distribution of the appropriately standardized coupling time converges to a Gumbel distribution, and that the standard deviation of the coupling time is asymptotic to an explicit universal constant multiple of the relaxation time. Perhaps surprisingly, we observe these results to hold both off criticality, where the coupling time closely mimics the coupon collector's problem, and also at the critical point, provided the cluster fugacity is below the value at which the transition becomes discontinuous. Finally, we consider analogous questions for the single-spin Ising heat-bath process

    Universal behavior of extreme value statistics for selected observables of dynamical systems

    Full text link
    The main results of the extreme value theory developed for the investigation of the observables of dynamical systems rely, up to now, on the Gnedenko approach. In this framework, extremes are basically identified with the block maxima of the time series of the chosen observable, in the limit of infinitely long blocks. It has been proved that, assuming suitable mixing conditions for the underlying dynamical systems, the extremes of a specific class of observables are distributed according to the so called Generalized Extreme Value (GEV) distribution. Direct calculations show that in the case of quasi-periodic dynamics the block maxima are not distributed according to the GEV distribution. In this paper we show that, in order to obtain a universal behaviour of the extremes, the requirement of a mixing dynamics can be relaxed if the Pareto approach is used, based upon considering the exceedances over a given threshold. Requiring that the invariant measure locally scales with a well defined exponent - the local dimension -, we show that the limiting distribution for the exceedances of the observables previously studied with the Gnedenko approach is a Generalized Pareto distribution where the parameters depends only on the local dimensions and the value of the threshold. This result allows to extend the extreme value theory for dynamical systems to the case of regular motions. We also provide connections with the results obtained with the Gnedenko approach. In order to provide further support to our findings, we present the results of numerical experiments carried out considering the well-known Chirikov standard map.Comment: 7 pages, 1 figur
    corecore