66 research outputs found

    Heterogeneous Timed Machines

    Get PDF
    International audienceWe present an algebra of discrete timed input/output au- tomata that execute in the context of different clock granularities -- timed machines -- as models of systems that can be dynamically inter- connected at run time in a heterogeneous context. We show how timed machines can be refined to a lower granularity of time and how timed machines with different clock granularities can be composed. We propose techniques for checking whether timed machines are consistent or feasi- ble. Finally, we investigate how consistency and feasibility of composition can be proved at run-time without computing products of automata

    Efficient and precise CRISPR/Cas9-mediated MECP2 modifications in human-induced pluripotent stem cells

    Get PDF
    Patients with Rett syndrome (RTT) have severe mental and physical disabilities. The majority of RTT patients carry a heterozygous mutation in methyl-CpG binding protein 2 (MECP2), an X-linked gene encoding an epigenetic factor crucial for normal nerve cell function. No curative therapy for RTT syndrome exists, and cellular mechanisms are incompletely understood. Here, we developed a CRISPR/Cas9-mediated system that targets and corrects the disease relevant regions of the MECP2 exon 4 coding sequence. We achieved homologous recombination (HR) efficiencies of 20% to 30% in human cell lines and iPSCs. Furthermore, we successfully introduced a MECP2(R270X) mutation into the MECP2 gene in human induced pluripotent stem cells (iPSCs). Consequently, using CRISPR/Cas9, we were able to repair such mutations with high efficiency in human mutant iPSCs. In summary, we provide a new strategy for MECP2 gene targeting that can be potentially translated into gene therapy or for iPSCs-based disease modeling of RTT syndrome

    Study of the doubly charmed tetraquark T+cc

    Get PDF
    Quantum chromodynamics, the theory of the strong force, describes interactions of coloured quarks and gluons and the formation of hadronic matter. Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. Particles with an alternative quark content are known as exotic states. Here a study is reported of an exotic narrow state in the D0D0π+ mass spectrum just below the D*+D0 mass threshold produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The state is consistent with the ground isoscalar T+cc tetraquark with a quark content of ccu⎯⎯⎯d⎯⎯⎯ and spin-parity quantum numbers JP = 1+. Study of the DD mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell D*+ mesons is consistent with the observed D0π+ mass distribution. To analyse the mass of the resonance and its coupling to the D*D system, a dedicated model is developed under the assumption of an isoscalar axial-vector T+cc state decaying to the D*D channel. Using this model, resonance parameters including the pole position, scattering length, effective range and compositeness are determined to reveal important information about the nature of the T+cc state. In addition, an unexpected dependence of the production rate on track multiplicity is observed

    Theoretical study on the adsorption ability of (ZnO)6 cluster for dimethylmercury removal and the influences of the supports and other ions in the adsorption process

    No full text
    In this work a number of computational methods have been applied to study the adsorption of dimethylmercury (DMM) on the (ZnO)6 cluster and the influences of the supports (MgO, SBA-15) and external ions (Cl−, OH−) on the adsorption process: the energy and electronic properties were calculated using Geometry, Frequency, Noncovalent, eXtended Tight Binding method; global minimum was found by using the Artificial Bee Colony algorithm; the Growing String Method was used to scan the potential energy surface to determine the transition states, and the stability of the adsorption products was investigated via molecular dynamic simulations. The calculated results show that the interaction between (ZnO)6 and DMM are both kinetically and thermodynamically favorable. The strong chemisorption of DMM on the (ZnO)6/MgO and (ZnO)6/SBA-15 is the consequence of the interaction between (ZnO)6 cluster and the supports. The higher adsorption affinity toward DMM of (ZnO)6/MgO, compared to (ZnO)6/SBA-15, is due to the synergistic effect of MgO with (ZnO)6. However, in the OH− ion environment, (ZnO)6/SBA-15, reversely, seemed to be a better adsorbent for DMM molecules

    Isolation and characterization of a DREB homolog gene from a local drought-tolerant maize cultivar

    No full text
    Clarifying the genetic background of the drought-tolerance trait is a crucial task that may help to improve plant performance under stress by a genetic engineering approach. dehydration-responsive element-binding protein (dREB) is a transcription factor family which modulates many stress-responsive genes. In this study, we isolated a DrEB homolog gene named ZmDrEBtv from Zea mays var. Tevang-1. Using bioinformatic tools, a number of Indels and SNPs in ZmDrEBtv sequence different from the reference accession were identified. In addition, based on deduced protein sequence similarity, ZmdREBtv was assigned to transcription factor dREB2 class as featured by a conserved dNa binding domain – aP2. The ZmDrEBtv construct under thecontrol of the rd29a promoter was transformed into a drought-sensitive maize plant, K7 line. The transgenic plants were assessed with reference to molecular and phenotypic characteristics related to the drought-tolenrance trait. The results proved that the maize plants carrying ZmDrEBtv gene showed enhanced tolerance and better performance to the water-deficit environment at different stages, compared to the wild-type plants
    • 

    corecore