81 research outputs found

    A comparative study of MEA and DEA for post-combustion CO2 capture with different process configurations

    Get PDF
    This paper presented a comparative study of monoethanolamine (MEA) and diethanolamine (DEA) for post-combustion CO2 capture (PCC) process with different process configurations to study the interaction effect between solvent and process. The steady state process model of the conventional MEA-based PCC process was developed in Pro/II¼ and was validated with the experimental data. Then ten different process configurations were simulated for both MEA and DEA. Their performances in energy consumption were compared in terms of reboiler duty and total equivalent work. The results show that DEA generally has better thermal performances than MEA for all these ten process configurations. Seven process configurations provide 0.38%–4.61% total energy saving compared with the conventional PCC process for MEA, and other two configurations are not favourable. For DEA, except one configuration, other process configurations have 0.27%–4.50% total energy saving. This work also analyzed the sensitivities of three key parameters (amine concentration, stripper pressure and lean solvent loading) in conventional process and five process modifications to show optimization strategy

    Long-term herbivore removal experiments reveal how geese and reindeer shape vegetation and ecosystem CO2-fluxes in high-Arctic tundra

    Get PDF
    1. Given the current rates of climate change, with associated shifts in herbivore population densities, understanding the role of different herbivores in ecosystem functioning is critical for predicting ecosystem responses. Here, we examined how migratory geese and resident, non-migratory reindeer—two dominating yet functionally contrasting herbivores—control vegetation and ecosystem processes in rapidly warming Arctic tundra. 2. We collected vegetation and ecosystem carbon (C) flux data at peak plant growing season in the two longest running, fully replicated herbivore removal experiments found in high-Arctic Svalbard. Experiments had been set up independently in wet habitat utilised by barnacle geese Branta leucopsis in summer and in moist-to-dry habitat utilised by wild reindeer Rangifer tarandus platyrhynchus year-round. 3. Excluding geese induced vegetation state transitions from heavily grazed, mossdominated (only 4 g m−2 of live above-ground vascular plant biomass) to ungrazed, graminoid-dominated (60 g m−2 after 4-year exclusion) and horsetail-dominated (150 g m−2 after 15-year exclusion) tundra. This caused large increases in vegetation C and nitrogen (N) pools, dead biomass and moss-layer depth. Alterations in plant N concentration and CN ratio suggest overall slower plant community nutrient dynamics in the short-term (4-year) absence of geese. Long-term (15-year) goose removal quadrupled net ecosystem C sequestration (NEE) by increasing ecosystem photosynthesis more than ecosystem respiration (ER). 4. Excluding reindeer for 21 years also produced detectable increases in live aboveground vascular plant biomass (from 50 to 80 g m−2; without promoting vegetation state shifts), as well as in vegetation C and N pools, dead biomass, moss-layer depth and ER. Yet, reindeer removal did not alter the chemistry of plants and soil or NEE. 5. Synthesis. Although both herbivores were key drivers of ecosystem structure and function, the control exerted by geese in their main habitat (wet tundra) was much more pronounced than that exerted by reindeer in their main habitat (moist-todry tundra). Importantly, these herbivore effects are scale dependent, because geese are more spatially concentrated and thereby affect a smaller portion of the tundra landscape compared to reindeer. Our results highlight the substantial heterogeneity in how herbivores shape tundra vegetation and ecosystem processes, with implications for ongoing environmental change

    A Molecular Epidemiological and Genetic Diversity Study of Tuberculosis in Ibadan, Nnewi and Abuja, Nigeria

    Get PDF
    Background Nigeria has the tenth highest burden of tuberculosis (TB) among the 22 TB high-burden countries in the world. This study describes the biodiversity and epidemiology of drug-susceptible and drug-resistant TB in Ibadan, Nnewi and Abuja, using 409 DNAs extracted from culture positive TB isolates. Methodology/Principal Findings DNAs extracted from clinical isolates of Mycobacterium tuberculosis complex were studied by spoligotyping and 24 VNTR typing. The Cameroon clade (CAM) was predominant followed by the M. africanum (West African 1) and T (mainly T2) clades. By using a smooth definition of clusters, 32 likely epi-linked clusters related to the Cameroon genotype family and 15 likely epi-linked clusters related to other “modern” genotypes were detected. Eight clusters concerned M. africanum West African 1. The recent transmission rate of TB was 38%. This large study shows that the recent transmission of TB in Nigeria is high, without major regional differences, with MDR-TB clusters. Improvement in the TB control programme is imperative to address the TB control problem in Nigeria

    Summer warming explains widespread but not uniform greening in the Arctic tundra biome

    Get PDF
    Arctic warming can influence tundra ecosystem function with consequences for climate feedbacks, wildlife and human communities. Yet ecological change across the Arctic tundra biome remains poorly quantified due to field measurement limitations and reliance on coarse-resolution satellite data. Here, we assess decadal changes in Arctic tundra greenness using time series from the 30 m resolution Landsat satellites. From 1985 to 2016 tundra greenness increased (greening) at ~37.3% of sampling sites and decreased (browning) at ~4.7% of sampling sites. Greening occurred most often at warm sampling sites with increased summer air temperature, soil temperature, and soil moisture, while browning occurred most often at cold sampling sites that cooled and dried. Tundra greenness was positively correlated with graminoid, shrub, and ecosystem productivity measured at field sites. Our results support the hypothesis that summer warming stimulated plant productivity across much, but not all, of the Arctic tundra biome during recent decades
    • 

    corecore