62 research outputs found

    Utilisation de la très haute résolution spatiale pour la caractérisation des habitats de rongeurs, vecteurs de zoonoses à La Réunion

    Get PDF
    Connaître la distribution des espèces vectrices de zoonoses est fondamentale pour comprendre les dynamiques épidémiologiques et caractériser les zones à risque. Cette distribution peut être appréhendée à différentes échelles : régionalement, l'aire de répartition de ces espèces définit les limites d'occurrence de la transmission d'agents pathogènes et, localement, leurs niches déterminent l'aléa. Cette dernière échelle requiert une connaissance très précise des milieux qui peut être acquise par l'analyse d'images satellite à très haute résolution spatiale. Dans le cadre d'un projet de recherche sur la leptospirose à La Réunion (LeptOI), cette étude propose de mesurer le potentiel d'utilisation d'une image Pléiades (produit rééchantillonné à 50 cm) pour caractériser la distribution locale de différents petits mammifères terrestres autour de l'Etang de Saint-Paul. Trois campagnes de piégeage ont permis la capture de 134 animaux appartenant à quatre des cinq espèces présentes à La Réunion (Rattus rattus, R. norvegicus, Suncus murinus et Tenrec ecaudatus). Une analyse orientée-objet de l'image Pléiades a permis de discriminer dix classes d'occupation des sols avec une précision totale de 83,6%. Des indices paysagers ont été calculés à partir de cette classification autour de chacun des pièges (distances les plus courtes aux classes d’occupation, densité de contours et pourcentages de surface des classes au sein de zones tampon de 50 et de 100 mètres). Trois zones ("humide", "anthropisée" et "sèche") sont clairement discriminées par ces variables, qui pourront être utilisées comme déterminants écologiques de différents profils épidémiologiques : la zone humide étant propice à la leptospirose et la zone anthropisée étant un lieu de cooccurrence des quatre espèces et ainsi potentiellement une zone d'échanges de pathogènes

    Особенности ценообразования на рынке экскурсионных услуг Крыма

    Get PDF
    Цель статьи – анализ специфики ценообразования на экскурсионные услуги в Крыму как важного фактора развития этого рынка

    Human leptospirosis on Reunion Island, Indian Ocean: are rodents the (only) ones to blame?

    Get PDF
    Background: Although leptospirosis is a zoonosis of major concern on tropical islands, the molecular epidemiology of the disease aiming at linking human cases to specific animal reservoirs has been rarely explored within these peculiar ecosystems. Methodology/Principal Findings: Five species of wild small mammals (n = 995) as well as domestic animals (n = 101) were screened for Leptospira infection on Reunion Island; positive samples were subsequently genotyped and compared to Leptospira from clinical cases diagnosed in 2012–2013 (n = 66), using MLST analysis. We identified two pathogenic species in human cases, namely Leptospira interrogans and Leptospira borgpetersenii. Leptospira interrogans was by far dominant both in clinical samples (96.6%) and in infected animal samples (95.8%), with Rattus spp and dogs being its exclusive carriers. The genetic diversity within L. interrogans was apparently limited to two sequence types (STs): ST02, identified among most clinical samples and in all rats with complete MLST, and ST34, identified in six humans, but not in rats. Noteworthy, L. interrogans detected in two stray dogs partially matched with ST02 and ST34. Leptospira borgpetersenii was identified in two clinical samples only (3.4%), as well as in cows and mice; four haplotypes were identified, of which two seemingly identical in clinical and animal samples. Leptospira borgpetersenii haplotypes detected in human cases were clearly distinct from the lineage detected so far in the endemic bat species Mormopterus francoismoutoui, thus excluding a role for this volant mammal in the local human epidemiology of the disease. Conclusions/Significance: Our data confirm rats as a major reservoir of Leptospira on Reunion Island, but also pinpoint a possible role of dogs, cows and mice in the local epidemiology of human leptospirosis. This study shows that a comprehensive molecular characterization of pathogenic Leptospira in both clinical and animal samples helps to gaining insight into leptospirosis epidemiology within a specific environmental setting

    Identification of Tenrec ecaudatus, a wild mammal Introduced to Mayotte Island, as a reservoir of the newly identified human pathogenic Leptospira mayottensis

    Get PDF
    Leptospirosis is a bacterial zoonosis of major concern on tropical islands. Human populations on western Indian Ocean islands are strongly affected by the disease although each archipelago shows contrasting epidemiology. For instance, Mayotte, part of the Comoros Archipelago, differs from the other neighbouring islands by a high diversity of Leptospira species infecting humans that includes Leptospira mayottensis, a species thought to be unique to this island. Using bacterial culture, molecular detection and typing, the present study explored the wild and domestic local mammalian fauna for renal carriage of leptospires and addressed the genetic relationships of the infecting strains with local isolates obtained from acute human cases and with Leptospira strains hosted by mammal species endemic to nearby Madagascar. Tenrec (Tenrec ecaudatus, Family Tenrecidae), a terrestrial mammal introduced from Madagascar, is identified as a reservoir of L. mayottensis. All isolated L. mayottensis sequence types form a monophyletic clade that includes Leptospira strains infecting humans and tenrecs on Mayotte, as well as two other Malagasy endemic tenrecid species of the genus Microgale. The lower diversity of L. mayottensis in tenrecs from Mayotte, compared to that occurring in Madagascar, suggests that L. mayottensis has indeed a Malagasy origin. This study also showed that introduced rats (Rattus rattus) and dogs are probably the main reservoirs of Leptospira borgpetersenii and Leptospira kirschneri, both bacteria being prevalent in local clinical cases. Data emphasize the epidemiological link between the two neighbouring islands and the role of introduced small mammals in shaping the local epidemiology of leptospirosis.S1 Fig. Distribution of small mammals sampling sites on Mayotte. Numbers correspond to the 18 sampling sites where Rattus rattus and Tenrec ecaudatus (white) and bats (orange) were trapped. Map was created with QGIS 2.8.1 (QGIS Development Team, 2016, QGIS Geographic Information System, Open Source Geospatial Foundation Project). Photography of Mayotte: BD Topo IGN, 2008.S2 Fig. The figures A and B display Bayesian phylogenetic trees of pathogenic Leptospira from Mayotte (blue) and Madagascar (green) based on 452 bp (57 taxa, HKY+I+G) (A) and 245 bp (64 taxa, K80+I) (B) of the rrs2 gene. At the nodes, the black numbers indicate posterior probabilities. The sequences highlighted in grey (A) and red (B) represent PCR positive samples for which only the rrs2 gene was obtained. Strain numbers of cultures produced herein are indicated in parentheses, “K” and “U” designating sequences obtained from kidney or urine, respectively. Specimen system: MDI and MAY = CRVOI specimen catalogue during field trips to Mayotte; all Canis lupus familiaris were sampled during field trips to Mayotte; FMNH = Field Museum of Natural History, Chicago; UADBA = Université d’Antananarivo, Département de Biologie Animale, Madagascar; for the other bacterial sequences from Homo sapiens and Microgale spp. see Bourhy et al. 2012 [15]and Dietrich et al. 2014 [4]. Museum numbers for Microgale spp.: 575 = UADBA 30869; 588 = UADBA 30289; 590 = UADBA 30291; 1335 = UADBA 32122; 1453 = UADBA 32125; 1467 = UADBA 32101.ERDF-POCT Réunion, LeptOI (#32913), ParamyxOI (#33857); Centre National de la Recherche Scientifique - Institut Ecologie et Environnement (ECOSAN BatMan) and Agence Régionale de la Santé Ocean Indien.http://www.plosntds.orgam2016Medical Virolog

    Ancestral African bats brought their cargo of pathogenic Leptospira to Madagascar under cover of colonization events

    Get PDF
    DATA AVAILABILITY STATEMENT : Information is available in the Supplementary Materials.SUPPLEMENTARY MATERIAL : TABLE S1: Ct-values obtained after qPCR for Leptospira detection.Madagascar is home to an extraordinary diversity of endemic mammals hosting several zoonotic pathogens. Although the African origin of Malagasy mammals has been addressed for a number of volant and terrestrial taxa, the origin of their hosted zoonotic pathogens is currently unknown. Using bats and Leptospira infections as a model system, we tested whether Malagasy mammal hosts acquired these infections on the island following colonization events, or alternatively brought these bacteria from continental Africa. We first described the genetic diversity of pathogenic Leptospira infecting bats from Mozambique and then tested through analyses of molecular variance (AMOVA) whether the genetic diversity of Leptospira hosted by bats from Mozambique, Madagascar and Comoros is structured by geography or by their host phylogeny. This study reveals a wide diversity of Leptospira lineages shed by bats from Mozambique. AMOVA strongly supports that the diversity of Leptospira sequences obtained from bats sampled in Mozambique, Madagascar, and Comoros is structured according to bat phylogeny. Presented data show that a number of Leptospira lineages detected in bat congeners from continental Africa and Madagascar are imbedded within monophyletic clades, strongly suggesting that bat colonists have indeed originally crossed the Mozambique Channel while infected with pathogenic Leptospira.The ‘Partenariat Mozambique-Réunion dans la recherche en santé: pour une approche intégrée d’étude des maladies infectieuses à risque épidémique (MoZaR)’ (Fond Européen de Développement Régional, Programme Opérationnel de Coopération Territoriale), and by a grant from the Grainger Bioinformatics Center at the Field Museum of Natural History.https://www.mdpi.com/journal/pathogensam2024Mammal Research InstituteZoology and EntomologySDG-15:Life on lan

    Biogeography of Leptospira in wild animal communities inhabiting the insular ecosystem of the western Indian Ocean islands and neighboring Africa

    Get PDF
    Understanding the processes driving parasite assemblages is particularly important in the context of zoonotic infectious diseases. Leptospirosis is a widespread zoonotic bacterial infection caused by pathogenic species of the genus Leptospira. Despite a wide range of animal hosts, information is still lacking on the factors shaping Leptospira diversity in wild animal communities, especially in regions, such as tropical insular ecosystems, with high host species richness and complex biogeographical patterns. Using a large dataset (34 mammal species) and a multilocus approach at a regional scale, we analyzed the role of both host species diversity and geography in Leptospira genetic diversity in terrestrial small mammals (rodents, tenrecs, and shrews) and bats from 10 different islands/countries in the western Indian Ocean (WIO) and neighboring Africa. At least four Leptospira spp. (L. interrogans, L. borgpetersenii, L. kirschneri, and L. mayottensis) and several yet-unidentified genetic clades contributed to a remarkable regional Leptospira diversity, which was generally related to the local occurrence of the host species rather than the geography. In addition, the genetic structure patterns varied between Leptospira spp., suggesting different evolutionary histories in the region, which might reflect both in situ diversification of native mammals (for L. borgpetersenii) and the more recent introduction of non-native host species (for L. interrogans). Our data also suggested that host shifts occurred between bats and rodents, but further investigations are needed to determine how host ecology may influence these events

    Development and characterization of a multiplex panel of microsatellite markers for the Reunion free-tailed bat <i>Mormopterus francoismoutoui</i>

    No full text
    The ecology and conservation status of many island-restricted bats remain largely unexplored. The free-tailed bat Mormopterus francoismoutoui is a small insectivorous tropical bat, endemic to Reunion Island (Indian Ocean). Despite being widely distributed on the island, the fine-scale genetic structure and evolutionary ecology of M. francoismoutoui remain under-investigated, and therefore its ecology is poorly known. Here, we used Illumina paired-end sequencing to develop microsatellite markers for M. francoismoutoui, based on the genotyping of 31 individuals from distinct locations all over the island. We selected and described 12 polymorphic microsatellite loci with high levels of heterozygosity, which provide novel molecular markers for future genetic population-level studies of M. francoismoutoui.</jats:p

    Describing fine spatiotemporal dynamics of rat fleas in an insular ecosystem enlightens abiotic drivers of murine typhus incidence in humans

    Get PDF
    Murine typhus is a flea-borne zoonotic disease that has been recently reported on Reunion Island, an oceanic volcanic island located in the Indian Ocean. Five years of survey implemented by the regional public health services have highlighted a strong temporal and spatial structure of the disease in humans, with cases mainly reported during the humid season and restricted to the dry southern and western portions of the island. We explored the environmental component of this zoonosis in an attempt to decipher the drivers of disease transmission. To do so, we used data from a previously published study (599 small mammals and 175 Xenopsylla fleas from 29 sampling sites) in order to model the spatial distribution of rat fleas throughout the island. In addition, we carried out a longitudinal sampling of rats and their ectoparasites over a 12 months period in six study sites (564 rats and 496 Xenopsylla fleas) in order to model the temporal dynamics of flea infestation of rats. Generalized Linear Models and Support Vector Machine classifiers were developed to model the Xenopsylla Genus Flea Index (GFI) from climatic and environmental variables. Results showed that the spatial distribution and the temporal dynamics of fleas, estimated through the GFI variations, are both strongly controlled by abiotic factors: rainfall, temperature and land cover. The models allowed linking flea abundance trends with murine typhus incidence rates. Flea infestation in rats peaked at the end of the dry season, corresponding to hot and dry conditions, before dropping sharply. This peak of maximal flea abundance preceded the annual peak of human murine typhus cases by a few weeks. Altogether, presented data raise novel questions regarding the ecology of rat fleas while developed models contribute to the design of control measures adapted to each micro region of the island with the aim of lowering the incidence of flea-borne diseases
    corecore