3,720 research outputs found

    On the stoichiometry of zirconium carbide.

    Get PDF
    The dependencies of the enhanced thermomechanical properties of zirconium carbide (ZrCx) with sample purity and stoichiometry are still not understood due to discrepancies in the literature. Multiple researchers have recently reported a linear relation between the carbon to zirconium atomic ratio (C/Zr) and the lattice parameter, in contrast with a more established relationship that suggests that the lattice parameter value attains a maximum value at a C/Zr ~ 0.83. In this study, the relationship between C/Zr atomic ratio and the lattice parameter is critically assessed: it is found that recent studies reporting the thermophysical properties of ZrCx have unintentionally produced and characterised samples containing zirconium oxycarbide. To avoid such erroneous characterization of ZrCx thermophysical properties in the future, we propose a method for the accurate measurement of the stoichiometry of ZrCx using three independent experimental techniques, namely: elemental analysis, thermogravimetric analysis and nuclear magnetic resonance spectroscopy. Although a large scatter in the results (ΔC/Zr = 0.07) from these different techniques was found when used independently, when combining the techniques together consistent values of x in ZrCx were obtained

    Gamma-Ray Bursts as a Probe of the Very High Redshift Universe

    Get PDF
    We show that, if many GRBs are indeed produced by the collapse of massive stars, GRBs and their afterglows provide a powerful probe of the very high redshift (z > 5) universe.Comment: To appear in Proc. of the 5th Huntsville Gamma-Ray Burst Symposium, 5 pages, LaTe

    An Imaging and Spectroscopic Study of the z=3.38639 Damped Lyman Alpha System in Q0201+1120: Clues to Star Formation Rate at High Redshift

    Full text link
    We present the results of a series of imaging and spectroscopic observations aimed at identifying and studying the galaxy responsible for the z = 3.38639 damped lya system in the z = 3.61 QSO Q0201+1120. We find that the DLA is part of a concentration of matter which includes at least four galaxies (probably many more) over linear comoving dimensions, greater than 5h^-1Mpc. The absorber may be a 0.7 L* galaxy at an impact parameter of 15 h^-1 kpc, but follow-up spectroscopy is still required for positive identification. The gas is turbulent, with many absorption components distributed over approximately 270 km/s and a large spin temperature, T_s greater than 4000K. The metallicity is relatively high for this redshift, Z(DLA) approximately 1/20 Z(solar). From consideration of the relative ratios of elements which have different nucleosynthetic timescales, it would appear that the last major episode of star formation in this DLA occurred at z greater than 4.3, more than approximately 500 Myr prior to the time when we observe it.Comment: Accepted for publication in Ap

    Limits on the LyC signal from z~3 sources with secure redshift and HST coverage in the E-CDFS field

    Get PDF
    Aim: We aim to measure the LyC signal from a sample of sources in the Chandra deep field south. We collect star-forming galaxies (SFGs) and active galactic nuclei (AGN) with accurate spectroscopic redshifts, for which Hubble Space Telescope (HST) coverage and multi-wavelength photometry are available. Method: We selected a sample of about 200 sources at z~3. Taking advantage of HST resolution, we applied a careful cleaning procedure and rejected sources showing nearby clumps with different colours, which could be lower-z interlopers. Our clean sample consisted of 86 SFGs (including 19 narrow-band selected Lya emitters) and 8 AGN (including 6 detected in X-rays). We measured the LyC flux from aperture photometry in four narrow-band filters covering wavelengths below a 912 A rest frame (3.11<z<3.53). We estimated the ratio between ionizing (LyC flux) and 1400 A non-ionizing emissions for AGN and galaxies. Results: By running population synthesis models, we assume an average intrinsic L(1400 A)/L(900 A) ratio of 5 as the representative value for our sample. With this value and an average treatment of the lines of sight of the inter-galactic medium, we estimate the LyC escape fraction relative to the intrinsic value (fesc_rel(LyC)). We do not directly detect ionizing radiation from any individual SFG, but we are able to set a 1(2)sigma upper limit of fesc_rel(LyC)<12(24)%. This result is consistent with other non-detections published in the literature. No meaningful limits can be calculated for the sub-sample of Lya emitters. We obtain one significant direct detection for an AGN at z=3.46, with fesc_rel(LyC) = (72+/-18)%. Conclusions: Our upper limit on fescrel(LyC) implies that the SFGs studied here do not present either the physical properties or the geometric conditions suitable for efficient LyC-photon escape.Comment: Accepted for publication in A&A on Jan 5th, 201

    Two spectroscopically confirmed galaxy structures at z=0.61 and 0.74 in the CFHTLS Deep~3 field

    Full text link
    Adami et al. (2010) have detected several cluster candidates at z>0.5 as part of a systematic search for clusters in the Canada France Hawaii Telescope Legacy Survey, based on photometric redshifts. We focus here on two of them, located in the D3 field: D3-6 and D3-43. We have obtained spectroscopy with Gemini/GMOS and measured redshifts for 23 and 14 galaxies in the two structures. These redshifts were combined with those available in the literature. A dynamical and a weak lensing analysis were also performed, together with the study of X-ray Chandra archive data. Cluster D3-6 is found to be a single structure of 8 spectroscopically confirmed members at an average redshift z=0.607, with a velocity dispersion of 423 km/s. It appears to be a relatively low mass cluster. D3-43-S3 has 46 spectroscopically confirmed members at an average redshift z=0.739. It can be decomposed into two main substructures, having a velocity dispersion of about 600 and 350 km/s. An explanation to the fact that D3-43-S3 is detected through weak lensing (only marginally, at the ~3sigma level) but not in X-rays could be that the two substructures are just beginning to merge more or less along the line of sight. We also show that D3-6 and D3-43-S3 have similar global galaxy luminosity functions, stellar mass functions, and star formation rate (SFR) distributions. The only differences are that D3-6 exhibits a lack of faint early type galaxies, a deficit of extremely high stellar mass galaxies compared to D3-43-S3, and an excess of very high SFR galaxies. This study shows the power of techniques based on photometric redshifts to detect low to moderately massive structures, even at z~0.75.Comment: Accepted in A&A, final version, shortened abstrac

    One-neutron removal reactions on light neutron-rich nuclei

    Full text link
    A study of high energy (43--68 MeV/nucleon) one-neutron removal reactions on a range of neutron-rich psd-shell nuclei (Z = 5--9, A = 12--25) has been undertaken. The inclusive longitudinal and transverse momentum distributions for the core fragments, together with the cross sections have been measured for breakup on a carbon target. Momentum distributions for reactions on tantalum were also measured for a subset of nuclei. An extended version of the Glauber model incorporating second order noneikonal corrections to the JLM parametrisation of the optical potential has been used to describe the nuclear breakup, whilst the Coulomb dissociation is treated within first order perturbation theory. The projectile structure has been taken into account via shell model calculations employing the psd-interaction of Warburton and Brown. Both the longitudinal and transverse momentum distributions, together with the integrated cross sections were well reproduced by these calculations and spin-parity assignments are thus proposed for 15^{15}B, 17^{17}C, 19−21^{19-21}N, 21,23^{21,23}O, 23−25^{23-25}F. In addition to the large spectroscopic amplitudes for the Îœ2\nu2s1/2_{1/2} intruder configuration in the N=9 isotones,14^{14}B and 15^{15}C, significant Îœ2\nu2s1/22_{1/2}^2 admixtures appear to occur in the ground state of the neighbouring N=10 nuclei 15^{15}B and 16^{16}C. Similarly, crossing the N=14 subshell, the occupation of the Îœ2\nu2s1/2_{1/2} orbital is observed for 23^{23}O, 24,25^{24,25}F. Analysis of the longitudinal and transverse momentum distributions reveals that both carry spectroscopic information, often of a complementary nature. The general utility of high energy nucleon removal reactions as a spectroscopic tool is also examined.Comment: 50 pages, 19 figures, submitted to Phys. Rev.

    Monitoring Of 14 Mev Neutrons

    Get PDF
    Long-lived fission products and minor actinides produced in nuclear power plants are the most radiotoxic nuclear wastes. They can be transmuted into stable nuclei or into nuclei with shorter lifetime thanks to the so-called Accelerator Driven Systems (ADS), consisting of the coupling of an intense high energy proton beam, a spallation target and a sub-critical reactor core. For safety reasons, an on-line and robust measurement of the reactivity during loading and power operation is mandatory. The investigation of the relationship between the current of the accelerator and the power level (or neutron flux) of the reactor appears to be powerful, any change in reactivity being accessible through the measurement of the current and the flux. Such a relationship will be studied in an experiment to be performed at the YALINA facility (JIPNR Sosny - Belarus) in the framework of the EUROTRANS IP (6th^{th} FP). At this installation, 14 MeV neutrons are produced in T(d,n)4^{4}He reactions by a deuteron beam impinging on a TiT target. Due to the tritium consumption over time, the intensity of the deuteron beam cannot be used for the monitoring of the neutron beam. The source neutron yield itself has to be accessed. This contribution describes the performance of a three-element silicon telescope dedicate

    Low energy measurement of the 7Be(p,gamma)8B cross section

    Full text link
    We have measured the cross section of the 7Be(p,gamma)8B reaction for E_cm = 185.8 keV, 134.7 keV and 111.7 keV using a radioactive 7Be target (132 mCi). Single and coincidence spectra of beta^+ and alpha particles from 8B and 8Be^* decay, respectively, were measured using a large acceptance spectrometer. The zero energy S factor inferred from these data is 18.5 +/- 2.4 eV b and a weighted mean value of 18.8 +/- 1.7 eV b (theoretical uncertainty included) is deduced when combining this value with our previous results at higher energies.Comment: Accepted for publication in Phys. Rev. Let

    Discovery of a rich proto-cluster at z=2.9 and associated diffuse cold gas in the VIMOS Ultra-Deep Survey (VUDS)

    Full text link
    [Abridged] We characterise a massive proto-cluster at z=2.895 that we found in the COSMOS field using the spectroscopic sample of the VIMOS Ultra-Deep Survey (VUDS). This is one of the rare structures at z~3 not identified around AGNs or radio galaxies, so it is an ideal laboratory to study galaxy formation in dense environments. The structure comprises 12 galaxies with secure spectroscopic redshift in an area of 7'x8', in a z bin of Dz=0.016. The measured galaxy number overdensity is delta_g=12+/-2. This overdensity has total mass of M~8.1x10^(14)M_sun in a volume of 13x15x17 Mpc^3. Simulations indicate that such an overdensity at z~2.9 is a proto-cluster that will collapse in a cluster of total mass M~2.5x10^(15)M_sun at z=0. We compare the properties of the galaxies within the overdensity with a control sample at the same z but outside the overdensity. We did not find any statistically significant difference between the properties (stellar mass, SFR, sSFR, NUV-r, r-K) of the galaxies inside and outside the overdensity. The stacked spectrum of galaxies in the overdensity background shows a significant absorption feature at the wavelength of Lya redshifted at z=2.895 (lambda=4736 A), with a rest frame EW = 4+/- 1.4 A. Stacking only background galaxies without intervening sources at z~2.9 along their line of sight, we find that this absorption feature has a rest frame EW of 10.8+/-3.7 A, with a detection S/N of ~4. These EW values imply a high column density (N(HI)~3-20x10^(19)cm^(-2)), consistent with a scenario where such absorption is due to intervening cold gas streams, falling into the halo potential wells of the proto-cluster galaxies. However, we cannot exclude the hypothesis that this absorption is due to the diffuse gas within the overdensity.Comment: 15 pages, 9 figures, accepted for publication in A&A (revised version after referee's comments and language editing

    Discovering extremely compact and metal-poor, star-forming dwarf galaxies out to z ~ 0.9 in the VIMOS Ultra-Deep Survey

    Full text link
    We report the discovery of 31 low-luminosity (-14.5 > M_{AB}(B) > -18.8), extreme emission line galaxies (EELGs) at 0.2 < z < 0.9 identified by their unusually high rest-frame equivalent widths (100 < EW[OIII] < 1700 A) as part of the VIMOS Ultra Deep Survey (VUDS). VIMOS optical spectra of unprecedented sensitivity (IABI_{AB} ~ 25 mag) along with multiwavelength photometry and HST imaging are used to investigate spectrophotometric properties of this unique sample and explore, for the first time, the very low stellar mass end (M* < 10^8 M⊙_{\odot}) of the luminosity-metallicity (LZR) and mass-metallicity (MZR) relations at z < 1. Characterized by their extreme compactness (R50 < 1 kpc), low stellar mass and enhanced specific star formation rates (SFR/M* ~ 10^{-9} - 10^{-7} yr^{-1}), the VUDS EELGs are blue dwarf galaxies likely experiencing the first stages of a vigorous galaxy-wide starburst. Using T_e-sensitive direct and strong-line methods, we find that VUDS EELGs are low-metallicity (7.5 < 12+log(O/H) < 8.3) galaxies with high ionization conditions, including at least three EELGs showing HeII 4686A emission and four EELGs of extremely metal-poor (<10% solar) galaxies. The LZR and MZR followed by EELGs show relatively large scatter, being broadly consistent with the extrapolation toward low luminosity and mass from previous studies at similar redshift. However, we find evidences that galaxies with younger and more vigorous star formation -- as characterized by their larger EWs, ionization and sSFR -- tend to be more metal-poor at a given stellar mass.Comment: Letter in A&A 568, L8 (2014). This replacement matches the published versio
    • 

    corecore