4,608 research outputs found

    Influence possible des protozoaires sur le taux de mortalité des bactéries autotrophes nitrifiantes

    Get PDF
    Le modèle de l'IAWQ du processus de boues activées représente les mécanismes endogènes de la biomasse nitrifiante par le décès des micro-organismes (équation d'ordre 1 par rapport à la biomasse). La constante de décès, ou taux de mortalité bA, est aujourd'hui encore mal connue, et en particulier les facteurs influants sur sa valeur. De récentes études ont montré que la prédation par la microfaune pourrait être un facteur déterminant sur la valeur de bA. Cette étude se propose donc de quantifier l'effet de la prédation sur la valeur de bA. Deux réacteurs maintenus sans alimentation en substrat ont été caractérisés en parallèle: l'un a reçu une dose d'antibiotique spécifique aux eucaryotes (cycloheximide) afin de diminuer la quantité d'organismes de la microfaune, alors que l'autre n'a reçu aucun antibiotique (témoin). Les résultats obtenus montrent que le cycloheximide inhibe la plupart des organismes de la microfaune sauf les amibes; celles-ci semblent plutôt stimulées par cet antibiotique. En ce qui concerne la nitrification, un ralentissement de la production de nitrate dans le réacteur traité à l'antibiotique est observé à partir du sixième jour. Cette diminution de production de nitrate est probablement causée par une réduction de l'azote nitrifiable (qui est mobilisé par les amibes) couplée à une prédation des organismes nitrifiants par les amibes. D'ailleurs, l'augmentation de la prédation par les amibes à partir du jour 6 a diminué l'activité nitrifiante également mesurée par respirométrie (rO2 Nmax). Cette diminution du taux de respiration indique une augmentation du taux de mortalité (bA) des organismes nitrifiants. En effet, la valeur du taux de mortalité mesurée dans le réacteur témoin est de 0.08 d-1 alors que selon la microfaune présente dans le réacteur inhibé au cycloheximide, la valeur de ce taux de mortalité a varié entre 0.05 d-1 et 0.15 d-1.Designing biological wastewater treatment plants with the aid of the model developed by the IAWQ requires the knowledge of biological kinetic parameters. For nitrifying activated sludge, these parameters are related to nitrifying bacteria: maximum autotrophic growth rate µAmax, yield coefficient YA and the autotrophic decay rate bA. Although variables influencing µAmax and YA values are well known, this is not the case for bA. MARTINAGE and PAUL (2000) have recently shown that the bA value is strongly influenced by the influent quality, leading to the assumption that influent quality has a strong effect on microfauna composition, and consequently on the grazing rate of microfauna on nitrifying bacteria. In fixed-film processes, protozoan grazing reduces the bacterial population considerably (NATUSCKA and WELANDER, 1994). However, although many data are available concerning the grazing rates of different protozoa, the effect of microfaunal grazing on nitrification is still a matter of debate (RATSAK et al., 1994) and its effect on the bA value is still unknown. These two topics are investigated here.Nitrifying activated sludges were grown in two identical batch reactors, but in one, cycloheximide was added to inhibit eucaryotic growth (MAURINES CARBONEILL et al., 1998). Microfauna organism numbers were quantified in both reactors by microscopic observations of flagellated protozoa (>8 µm), amoebae, ciliates, rotifers and higher invertebrates (Fig. 3). Microbial counts were then correlated with the bA value. The latter was determined using the procedure proposed by SALZER (1992) which consists of characterising the time behaviour of the maximum nitrification rate measured by respirometry of activated sludge under substrate starvation. Under these conditions bacteria die and organic nitrogen is released into the bulk phase. This nitrogen is ammonified, and nitrifying bacteria use this substrate to produce nitrate, and then autotrophic bacterial growth occurs. This method takes this growth into account by characterising nitrate production during the experiment (Fig. 2).The effect of cycloheximide on nitrification was first determined to make sure that this compound is not inhibitory toward nitrifiers. Results obtained (Table 1) show that cycloheximide was not inhibitory toward nitrate production or the maximum nitrification oxygen uptake rate (rO2 N) after 4 hours of contact with nitrifying biomass. Cycloheximide addition in the activated sludge had an important impact on rotifers and flagellates but no effect on ciliates; it also seemed to stimulate amoebae growth. In both reactors, flagellates were mainly Peranama, attached ciliates were mainly Opercularia and Epistylis and a few Vorticella. Free ciliates like Aspidisca and Euplotes were found in both reactors.Variation with time of the abundance of microfauna organisms is shown in Figures 4 and 5 for both reactors. In the reference reactor the number of microfauna organisms decreased with time (Fig. 4) probably due to substrate starvation. Microfauna composition remained however diversified. For the inhibited reactor (Fig. 5), three periods were observed. During period I, the microfauna was mainly composed of ciliates and the number of microfaunal organisms decreased rapidly. During period II, an important growth of amoebae was observed. Cycloheximide was then added during this period to reduce their number. This growth of amoebae seems to be caused by the resistance of these micro-organisms toward inhibiting compounds (SRIKANTH et BERK, 1993). During period III, the number of microfaunal organisms was lower than during period II, and microfauna was mainly composed of ciliates.Nitrate concentration behaviour, necessary for bA calculation, is shown on Figure 6. In the reference reactor, nitrate concentrations varied linearly. For the inhibited reactor, the linear pattern was not observed during period II. This result was probably caused by an important nitrogen assimilation need of amoebae (ELDRIGE and JACKSON, 1993). Because organic nitrogen released by bacterial decay is consumed by amoebae assimilation, less nitrogen is available for the ammonification process and therefore for nitrification. Ammonia concentrations remained below 0.2 mg N·l-1 during all the experiment for both reactors. When amoebae disappeared from the inhibited reactor (period III) nitrate concentration varied linearly again.Variations of the maximum nitrification oxygen uptake rate (rO2 Nmax) with time are presented in Figure 7 (A&B) for both reactors. Two curves are plotted on each figure. Empty squares represent the measured rO2 N and black points represent the maximum nitrification rate that would have been measured if no growth on ammonification products had occurred. For the reference reactor (Fig. 7A), a value for bA of 0.08 d-1 can be calculated and can be considered constant for a constant microfauna composition.Three bA values can be estimated for the reactor inhibited with cycloheximide (Fig. 7B), corresponding to the three periods observed for microfauna composition. During period I, the bA value is 0.05 d-1 : a decrease in the microfaunal organism numbers implies a decrease of the bA value. During period II, when a development of amoebae is observed, the bA value increases and reaches 0.15 d-1. During period III with reduced grazing, the bA value is 0.13 d-1. Since during periods I and III the microfauna is mainly composed of ciliates, this difference between bA values is likely due to the observed difference in floc size between periods I and III.The results obtained during this study tend to prove (1) that the use of cycloheximide reduces microfaunal populations but can lead to a development of amoebae, and (2) that microfauna grazing seems to have an influence on the bA value, which can vary from 0.05 to 0.15 d-1 depending on microfaunal composition and abundance

    Specific anchoring modes of two distinct dystrophin rod sub-domains interacting in phospholipid Langmuir films studied by atomic force microscopy and PM-IRRAS.

    Get PDF
    International audienceDystrophin rod repeats 1-3 sub-domain binds to acidic phosphatidylserine in a small vesicle binding assay, while the repeats 20-24 sub-domain does not. In the present work, we studied the adsorption behaviour of both sub-domains at the air/liquid interface and at the air/lipid interface in a Langmuir trough in order to highlight differences in interfacial properties. The adsorption behaviour of the two proteins at the air/liquid interface shows that they display surface activity while maintaining their alpha-helical secondary structure as shown by PM-IRRAS. Strikingly, R20-24 needs to be highly hydrated even at the interface, while this is not the case for R1-3, indicating that the surface activity is dramatically higher for R1-3 than R20-24. Surface-pressure measurements, atomic force microscopy and PM-IRRAS are used in a Langmuir experiment with DOPC-DOPS monolayers at two different surface pressures, 20mN/m and 30mN/m. At the lower surface pressure, the proteins are adsorbed at the lipid film interface while maintaining its alpha-helical structure. After an increase of the surface pressure, R1-3 subsequently produces a stable film, while R20-24 induces a reorganization of the lipid film with a subsequent decrease of the surface pressure close to the initial value. AFM and PM-IRRAS show that R1-3 is present in high amounts at the interface, being arranged in clusters representing 3.3% of the surface at low pressure. By contrast, R20-24 is present at the interface in small amounts bound only by a few electrostatic residues to the lipid film while the major part of the molecule remains floating in the sub-phase. Then for R1-3, the electrostatic interaction between the proteins and the film is enhanced by hydrophobic interactions. At higher surface pressure, the number of protein clusters increases and becomes closer in both cases implying the electrostatic character of the binding. These results indicate that even if the repeats exhibit large structural similarities, their interfacial properties are highly contrasted by their differential anchor mode in the membrane. Our work provides strong support for distinct physiological roles for the spectrin-like repeats and may partly explain the effects of therapeutic replacement of dystrophin deficiency by minidystrophins

    UWB Vivaldi Antenna Array Lower Band Improvement for Ground Penetrating Radar Applications

    Get PDF
    This paper concerns a ground penetrating radar system (GPR) presenting beam forming ability. This ability is due to a great flexibility in the emission of wavefronts. The innovative concept is to use an array of antennas which can reconfigure itself dynamically, in order to focus on a desired target. This antennas system can act as a new microwave sensor to detect and characterize buried targets in an inhomogeneous medium which is the case study in various application fields such as geophysics, medical, planetology… Its electronics are in development with the DORT (Time reversal technique) method integration for optimizing the localization of buried target. This paper aims are to present the antenna optimization used in the GPR applications. Typical antennas used in GPR are generally Vivaldi ones directly on the ground. Especially, in the context of the space mission ExoMars 2020, the radar antenna is set on a mobile station at a distance of about 30 cm from the ground to avoid any contact. However, they are limited by their important size, due to the lowest frequency of their bandwidth. Results of this work concern an increase of the antenna bandwidth by shifting the lower-band limit, making it a UWB type [500 MHz - 4 GHz] without changing its size. As low frequency waves can spread deeper into probed medium, this optimization can improve the radar data inversion performances

    Structural and functional characterisation of human RNA helicase DHX8 provides insights into the mechanism of RNA-stimulated ADP release.

    Get PDF
    DHX8 is a crucial DEAH-box RNA helicase involved in splicing and required for the release of mature mRNA from the spliceosome. Here, we report the biochemical characterisation of full-length human DHX8 and the catalytically active helicase core DHX8Δ547, alongside crystal structures of DHX8Δ547 bound to ADP and a structure of DHX8Δ547 bound to poly(A)6 single-strand RNA. Our results reveal that DHX8 has an in vitro binding preference for adenine-rich RNA and that RNA binding triggers the release of ADP through significant conformational flexibility in the conserved DEAH-, P-loop and hook-turn motifs. We demonstrate the importance of R620 and both the hook-turn and hook-loop regions for DHX8 helicase activity and propose that the hook-turn acts as a gatekeeper to regulate the directional movement of the 3' end of RNA through the RNA-binding channel. This study provides an in-depth understanding of the activity of DHX8 and contributes insights into the RNA-unwinding mechanisms of the DEAH-box helicase family

    Mortar FEs on Overlapping Meshes : Application to Magnetodynamics

    Get PDF
    Abstract The finite element (FE) method is frequently used in magnetodynamics as well suited to treat problems with complex geometries while keeping a simplicity in the implementation. However, some modelisations, as in eddy current (EC) non destructive testing (NDT), present the particularity to have moving parts. A global remeshing can be necessary which causes expensive CPU time. Domain decomposition methods allowing to take into account the movement without having to remesh the whole computational domain. The mortar element method (MEM), a variational non-conforming domain decomposition approach [1] offers attractive advantages in terms of flexibility and accuracy. In its original version for non-overlapping subdomains, the information is transferred through the skeleton of the decomposition by means of a suitable L 2 -projection of the field trace from the master to the slave subdomains. A MEM with overlapping subdomains has been proposed to coupled a global scalar potential defined everywhere in the considered domain and a local vector potential defined only in (possibly moving) conductor

    Rapid measurement of intravoxel incoherent motion (IVIM) derived perfusion fraction for clinical magnetic resonance imaging

    Get PDF
    Objective This study aimed to investigate the reliability of intravoxel incoherent motion (IVIM) model derived parameters D and f and their dependence on b value distributions with a rapid three b value acquisition protocol. Materials and methods Diffusion models for brain, kidney, and liver were assessed for bias, error, and reproducibility for the estimated IVIM parameters using b values 0 and 1000, and a b value between 200 and 900, at signal-to-noise ratios (SNR) 40, 55, and 80. Relative errors were used to estimate optimal b value distributions for each tissue scenario. Sixteen volunteers underwent brain DW-MRI, for which bias and coefficient of variation were determined in the grey matter. Results Bias had a large influence in the estimation of D and f for the low-perfused brain model, particularly at lower b values, with the same trends being confirmed by in vivo imaging. Significant differences were demonstrated in vivo for estimation of D (P = 0.029) and f (P < 0.001) with [300,1000] and [500,1000] distributions. The effect of bias was considerably lower for the high-perfused models. The optimal b value distributions were estimated to be brain500,1000, kidney300,1000, and liver200,1000. Conclusion IVIM parameters can be estimated using a rapid DW-MRI protocol, where the optimal b value distribution depends on tissue characteristics and compromise between bias and variability

    Dual-polarized aperture-coupled patch antennas with application to retrodirective and monopulse arrays

    Get PDF
    An isolation technique, which does not require conventional circulators, is proposed for the realization of a simple and low-cost aperture-coupled circularly polarized antenna for application to full-duplex devices. The approach is based on the use of slotlines loops to provide surface current cancellation in specific regions of the antenna structure, leading to improved axial ratio and isolation between the ports in excess of 50 dB. Circular polarization is achieved by introducing a double-box hybrid coupler, which is optimized to obtain good matching and isolation of the quadrature signals. On this basis, both right- and left-hand circularly polarized beams are achieved by interchanging the transmitting and receiving antenna ports, enabling full-duplex operation and reconfigurability. While the antenna structure is designed for 2.45 GHz operation, one can take advantage of the proposed approach to tune the frequency of maximum isolation. Both single-element prototypes as well as a 2 × 2 array are fabricated and measured, showing good agreement with the simulations and validating the proposed isolation approach. The beam steering capabilities as well as the application to a Van Atta retrodirective antenna array and the possibilities of achieving delta and sum patterns for monopulse operation are also reported. The proposed full-duplex antenna can also represent an excellent solution for narrowband wireless power transmission systems

    Simple and Reliable Determination of Intravoxel Incoherent Motion Parameters for the Differential Diagnosis of Head and Neck Tumors

    Get PDF
    Intravoxel incoherent motion (IVIM) imaging can characterize diffusion and perfusion of normal and diseased tissues, and IVIM parameters are authentically determined by using cumbersome least-squares method. We evaluated a simple technique for the determination of IVIM parameters using geometric analysis of the multiexponential signal decay curve as an alternative to the least-squares method for the diagnosis of head and neck tumors. Pure diffusion coefficients (D), microvascular volume fraction (f), perfusion-related incoherent microcirculation (D), and perfusion parameter that is heavily weighted towards extravascular space (P) were determined geometrically (Geo D, Geo f, and Geo P) or by least-squares method (Fit D, Fit f, and Fit D) in normal structures and 105 head and neck tumors. The IVIM parameters were compared for their levels and diagnostic abilities between the 2 techniques. The IVIM parameters were not able to determine in 14 tumors with the least-squares method alone and in 4 tumors with the geometric and least-squares methods. The geometric IVIM values were significantly different (p<0.001) from Fit values (+2±64% and 7±24% for D and f values, respectively). Geo D and Fit D differentiated between lymphomas and SCCs with similar efficacy (78% and 80% accuracy, respectively). Stepwise approaches using combinations of Geo D and Geo P, Geo D and Geo f, or Fit D and Fit Ddifferentiated between pleomorphic adenomas, Warthin tumors, and malignant salivary gland tumors with the same efficacy (91% accuracy = 21/ 23). However, a stepwise differentiation using Fit D and Fit f was less effective (83% accuracy = 19/23). Considering cumbersome procedures with the least squares method compared with the geometric method, we concluded that the geometric determination of IVIM parameters can be an alternative to least-squares method in the diagnosis of head and neck tumors

    Interactions among mitochondrial proteins altered in glioblastoma

    Get PDF
    Mitochondrial dysfunction is putatively central to glioblastoma (GBM) pathophysiology but there has been no systematic analysis in GBM of the proteins which are integral to mitochondrial function. Alterations in proteins in mitochondrial enriched fractions from patients with GBM were defined with label-free liquid chromatography mass spectrometry. 256 mitochondrially-associated proteins were identified in mitochondrial enriched fractions and 117 of these mitochondrial proteins were markedly (fold-change &#8805;2) and significantly altered in GBM (p &#8804; 0.05). Proteins associated with oxidative damage (including catalase, superoxide dismutase 2, peroxiredoxin 1 and peroxiredoxin 4) were increased in GBM. Protein–protein interaction analysis highlighted a reduction in multiple proteins coupled to energy metabolism (in particular respiratory chain proteins, including 23 complex-I proteins). Qualitative ultrastructural analysis in GBM with electron microscopy showed a notably higher prevalence of mitochondria with cristolysis in GBM. This study highlights the complex mitochondrial proteomic adjustments which occur in GBM pathophysiology

    Repeatability of IVIM biomarkers from diffusion-weighted MRI in head and neck:Bayesian probability versus neural network

    Get PDF
    Purpose: The intravoxel incoherent motion (IVIM) model for DWI might provide useful biomarkers for disease management in head and neck cancer. This study compared the repeatability of three IVIM fitting methods to the conventional nonlinear least-squares regression: Bayesian probability estimation, a recently introduced neural network approach, IVIM-NET, and a version of the neural network modified to increase consistency, IVIM-NETmod. Methods: Ten healthy volunteers underwent two imaging sessions of the neck, two weeks apart, with two DWI acquisitions per session. Model parameters (ADC, diffusion coefficient (Formula presented.), perfusion fraction (Formula presented.), and pseudo-diffusion coefficient (Formula presented.)) from each fit method were determined in the tonsils and in the pterygoid muscles. Within-subject coefficients of variation (wCV) were calculated to assess repeatability. Training of the neural network was repeated 100 times with random initialization to investigate consistency, quantified by the coefficient of variance. Results: The Bayesian and neural network approaches outperformed nonlinear regression in terms of wCV. Intersession wCV of (Formula presented.) in the tonsils was 23.4% for nonlinear regression, 9.7% for Bayesian estimation, 9.4% for IVIM-NET, and 11.2% for IVIM-NETmod. However, results from repeated training of the neural network on the same data set showed differences in parameter estimates: The coefficient of variances over the 100 repetitions for IVIM-NET were 15% for both (Formula presented.) and (Formula presented.), and 94% for (Formula presented.); for IVIM-NETmod, these values improved to 5%, 9%, and 62%, respectively. Conclusion: Repeatabilities from the Bayesian and neural network approaches are superior to that of nonlinear regression for estimating IVIM parameters in the head and neck
    corecore