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Purpose: The intravoxel incoherent motion (IVIM) model for DWI might provide 
useful biomarkers for disease management in head and neck cancer. This study com-
pared the repeatability of three IVIM fitting methods to the conventional nonlinear 
least-squares regression: Bayesian probability estimation, a recently introduced neu-
ral network approach, IVIM-NET, and a version of the neural network modified to 
increase consistency, IVIM-NETmod.
Methods: Ten healthy volunteers underwent two imaging sessions of the neck, two 
weeks apart, with two DWI acquisitions per session. Model parameters (ADC, dif-
fusion coefficient Dt, perfusion fraction fp, and pseudo-diffusion coefficient Dp) 
from each fit method were determined in the tonsils and in the pterygoid muscles. 
Within-subject coefficients of variation (wCV) were calculated to assess repeatabil-
ity. Training of the neural network was repeated 100 times with random initialization 
to investigate consistency, quantified by the coefficient of variance.
Results: The Bayesian and neural network approaches outperformed nonlinear re-
gression in terms of wCV. Intersession wCV of Dt in the tonsils was 23.4% for non-
linear regression, 9.7% for Bayesian estimation, 9.4% for IVIM-NET, and 11.2% 
for IVIM-NETmod. However, results from repeated training of the neural network 
on the same data set showed differences in parameter estimates: The coefficient 
of variances over the 100 repetitions for IVIM-NET were 15% for both Dt and fp,   
and 94% for Dp; for IVIM-NETmod, these values improved to 5%, 9%, and 62%, 
respectively.
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1 |  INTRODUCTION

Magnetic resonance DWI is used for diagnostic and prog-
nostic purposes in head and neck cancer.1-4 In DWI, signal 
decreases with diffusion weighting as result of Brownian 
motion of water molecules and other intravoxel incoherent 
motions (IVIMs) (ie, “microscopic translational motions that 
occur in each image voxel”).5,6 By fitting the DWI signal 
from different diffusion weightings to an exponential model, 
its parameters can be estimated. A mono-exponential can be 
used to estimate the ADC. A bi-exponential model (the IVIM 
model6) can be used to additionally model pseudo-diffusion 
component (Dp) and perfusion fraction ( fp)—both related to 
the microcirculation of blood—resulting in the corrected or 
“true” diffusion coefficient (Dt). Because the restriction of 
diffusion is related to the microstructure of tissue (eg, cellular 
density), this can characterize tumors and provide early in-
formation on changes due to (or despite) treatment occurring 
before detectable tumor growth or shrinkage.7

The IVIM model is appealing, as it allows the assessment 
of the additional biomarkers Dp and fp. However, IVIM pa-
rameter estimation tends to be very sensitive to noise. As a 
result, parametric maps are often noisy and show poor repeat-
ability.8 Poor repeatability limits the use of IVIM in practice, 
because precision is required for patient-specific clinical use 
of IVIM.

Recently, novel fitting methods with a Bayesian probabil-
ity approach9-11 and a neural network12 have shown promis-
ing results in terms of reduced noise in the parameter maps 
based on simulations, and they reduced interobserver vari-
ability in vivo. If these techniques also help improve test–  
retest repeatability in vivo, they could help introduce IVIM 
into clinical workflows.

Therefore, in this study we investigate these new meth-
ods in terms of test–retest repeatability. We compare the in-
trasession and intersession repeatability of the least-squares 
fitting method, the Bayesian inference fitting method, and 
two neural network–based fitting methods for in vivo IVIM 
data in the head and neck region in healthy volunteers. We 
hypothesize that the new Bayesian and neural network ap-
proaches will outperform the conventional least-squares 
fitting approach.

2 |  METHODS

This study was approved by the local medical ethics committee, 
and written informed consent was obtained from all subjects. 
Ten healthy volunteers were included: 7 males, 3 females, mean 
age 33 years (range 22-50 years). Each volunteer underwent 
two MRI sessions (at least 2 weeks apart) with two examina-
tions per session. The subject was taken out of the MR scan-
ner between examinations. Sequences were acquired on a 3T 
Ingenuity TF PET/MR scanner (Philips Healthcare, Best, the 
Netherlands) equipped with a 16-channel neurovascular coil. 
Each examination consisted of an axial stack of 29 T1-weighted 
turbo spin-echo images followed by a stack of DWI acquisi-
tions in the same 29 imaging planes, covering the neck from 
the larynx until the base of the skull. Diffusion-weighted imag-
ing was acquired with a single-shot spin-echo EPI sequence 
with 12 b-values (0, 2, 5, 25, 50, 75, 100, 150, 300, 500, 700, 
and 1000 s/mm2). Only the DWI images with b = 1000 s/mm2   
were averaged over two acquisitions. Diffusion weighting was 
performed in three orthogonal directions with bipolar gradi-
ents, TE = 57 ms, TR = 3242 ms, gradient time interval = 28 
ms, and gradient duration = 18 ms. Further scan parameters 
were as follows: acquired matrix size = 128 × 111 × 29, ac-
quired voxel size = 1.88 × 1.95 × 4 mm3, reconstructed voxel 
size = 1 × 1 × 4 mm3, and short TI inversion recovery used for 
fat suppression with a 230-ms TI. The DWI scan duration was 
6 minutes. Motion correction of the DWI images was applied 
by image registration, as provided by the scanner software.

The DWI data were processed voxelwise to generate para-
metric maps of the ADC and IVIM parameters. Parameter 
estimates were extracted for two tissues: tonsil and medial 
pterygoid muscle. Volumes of interest (VOIs) were defined on 
the images without diffusion weighting (b = 0 s/mm2) while 
using the T1-weighted image for anatomical reference. The 
T1 images were not co-registered to the diffusion-weighted 
images. Delineation was performed using in-house-devel-
oped software by a single observer in one session. Spherical 
VOIs of 5-mm radius were placed in each tonsil, and spher-
ical VOIs of 6-mm radius were placed in the medial ptery-
goid muscle on each side. These VOIs were small enough 
to always fit inside the tissues of interest. The VOIs were 
projected onto the parametric maps, all voxels with (partial) 

Conclusion: Repeatabilities from the Bayesian and neural network approaches are 
superior to that of nonlinear regression for estimating IVIM parameters in the head 
and neck.
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overlap were extracted, and the median values of the parame-
ters were then calculated.

The signal at b = 0 s/mm2 was excluded (except for cal-
culating fit boundary of S0 [see subsequently] and for nor-
malization purposes in the neural network) for the parameter 
estimations described subsequently, reducing the number of 
b-values to 11. The reason for this is to reduce attenuation 
effects of macroscopic flow at small b-values.13,14 This ad-
ditional accelerated decay between b = 0 s/mm2 and the first 
nonzero b-value is not accounted for in the conventional 
IVIM and ADC models.15,16

The mono-exponential model used to estimate the ADC 
is given by

where S0 is the signal intensity without diffusion weighting 
(b = 0 s/mm2), and ADC and S0 are estimated by performing 
a linear least-squares fit on the log-transformed data, as imple-
mented by the scanner manufacturer.

The IVIM model extends the ADC model with a second 
exponential. The bi-exponential equation of the model is 
given by

where fp is the perfusion fraction; Dp the pseudo-diffusion 
coefficient; Dt is the diffusion coefficient; and S0 is the fitted 
signal intensity for b = 0 s/mm2. The IVIM model parameters 
were estimated using four different approaches: a nonlinear 
least-squares fit, a Bayesian approach,9 and two neural net-
work-based fitting approaches.12 The two neural network ap-
proaches consisted of a network nearly identical to the original 
publication (IVIM-NET)12 and a modified network (IVIM-
NETmod), as detailed later.

2.1 | Nonlinear least squares

The nonlinear least-squares fit was performed using the 
trust-region reflective algorithm as implemented in MATLAB 
R2019a (MathWorks, Natick, MA), with the following fit 
boundaries: 0 < fp < 1, 0 < Dt < 0.005 mm2/s, 0.005 < Dp < 1 
mm2/s, and 0 < S0 < 5 ⋅ maxS (b). Starting values were se-
lected randomly in the range within the fit boundaries as pro-
vided by MATLAB functionality.

2.2 | Bayesian probability

The Bayesian approach was also performed in MATLAB 
R2019a and was based on a previous publication.9 In short, 

the method gives a maximum a posteriori estimate of each 
parameter by maximizing the marginal posterior probability 
density functions, which are acquired by means of slice-sam-
pling17 the joint posterior probability.9,17,18 The following 
multiparametric Gaussian likelihood function was used:

where n is the number of b-values. The constraint Dt < Dp was 
implemented in the joint prior distribution.19 Lognormal distri-
bution priors were used for Dp and Dt; a beta distribution prior 
was used for fp; and a uniform distribution prior was used for S0. 
The priors for Dp, Dt, and fp were estimated by fitting these dis-
tributions to results of a prerun of the same Bayesian approach 
using bounded uniform priors (0 < fp < 1, 0 < Dt < 1 mm2/s, 
0 < Dp < 1 mm2/s, and 0 < S0).

2.3 | Neural network

The IVIM-NET approach was carried out in Python 3.7.4 and 
PyTorch 1.3.0 using the open access code from the original 
publication12,20 and code obtained from the repository of co-
author OGC (currently shared on request; will be made pub-
lic in the near future and maintained as IVIM-NET evolves). 
Our source code with the network definitions and training 
methods is available on GitHub.

The network, depicted in Figure 1, consists of an input layer 
with a number of neurons equal to the number of b-values used to 
analyze the data, three fully connected hidden layers (each with 
the same number of neurons, each using the exponential linear 
unit activation function), and an output layer with a neuron for 
each parameter. Background voxels were excluded by manually 
thresholding the b = 0 mm2/s images. Training was performed 
on the entire data set for each epoch, combining and shuffling 
the voxels from all patients. Data normalization, which is stan-
dard for neural networks, was performed using S(0). This signal 
measured at b = 0 s/mm2 was only used for normalization, not 
as input for the network. The mean squared error between the 
fitted and actual, normalized, signal (S (b) ∕S (0)) was used as 
loss function. An early stopping criterium (patience) of 10 bad 
epochs was used, so training was stopped when no improve-
ment was found during the last 10 epochs. Different from the 
original publication, we included an output neuron for S0∕S (0), 
where S0 and S (0) are the estimated and measured signal inten-
sity at b = 0 s/mm2, respectively.

In addition to this implementation, we made a few modi-
fications in a new implementation, IVIM-NETmod. The IVIM 
parameters were constrained by g(x). In the original network, 
the predicted IVIM parameters were constraint by taking the 
following absolute:

(1)S (b) = S0 ⋅ e−b ⋅ADC,

(2)S (b) = S0

(
fpe−bDp +

(
1 − fp

)
e−bDt

)
,

(3)

P
(
S|Dt, Dp, fp, S0

)
∝

(
1

2

∑

{b}

(
S (b) − S0

(
fpe−bDp +

(
1 − fp

)
e−bDt

))2

)−n∕2

,



   | 3397KOOPMAN et Al.

In the presented modified network, a sigmoid function 
was applied to the output as constraint instead:

which rescaled the output between the following fit boundaries 
(min < parameter < max): 0 < fp < 0.7, 0 < Dt < 0.005 mm2/s, 
0.005 < Dp < 0.5 mm2/s, and 0.8 < S0∕S (0) < 1.2. Second, 
with the aim of preventing overfitting, we split the data set into 
two parts: one for training (80%) and one for validation (20%). 
For the same reason, we reduced the patience (early stopping 
criterion, see previously) from 10 to 4. Furthermore, as we had 
a substantially larger data set than Barbieri et al, we limited the 
number of iterations during each training epoch to 1024, such 
that we regularly validate how well the network is performing 
even for large data sets. Because the batch size of an iteration 
is fixed (128 voxels), each epoch no longer processes the entire 
data set but a random selection of the training set (in our case, 
approximately 1.5%). Each epoch evaluates the entire valida-
tion set.

2.3.1 | Network consistency

To investigate the consistency of the IVIM-NET approaches 
as a whole (ie, whether the network converges to consistent 
estimates), we repeated the complete process of training 100 
times. Each time, the network was initialized with new ran-
dom weights and shuffling (and splitting in the case of IVIM-
NETmod) of the data set. We compared the runs qualitatively 
by visual inspection of the parametric maps. We investigated 
consistency by calculating the average parameter values for 
both tissues over all subjects and sessions in each run, and 

then calculated the coefficient of variance (CoV) over the 
100 runs.

2.4 | Statistics

The intrasession repeatability was calculated by considering 
the two measurements within a session as paired measure-
ments. Conversely, the intersession repeatability was calcu-
lated by considering the first measurements in each session 
as one pair, and the second measurements in each session as 
another pair. Moreover, the left and right measured values 
were considered measurements for the same tissue of interest 
(ie, tonsil and pterygoid muscle). Thus, each subject had four 
pairs of observations for the calculation of repeatability, and 
pairs were either between sessions or within sessions.

We used 95% confidence intervals of the mean difference 
between paired measurements over all subjects (for both in-
trasession and intersession pairing) to verify that the repeated 
measurements were not systematically different.22 We then 
calculated the within-subject coefficient of variation (wCV), 
which is a relative measure of repeatability.23 An overview 
of the concepts repeatability and consistency can be found 
in Table 1.

We compared the repeatability of the four methods with 
paired Wilcoxon signed-rank tests of the wCV estimates. For 
the IVIM-NET methods, we calculated the median wCV of 
the 100 runs for each subject, and used these wCV estimates 
in the paired tests among the four methods. A P-value below 
.05 was considered significant.

3 |  RESULTS

Figure 2 shows examples of the parametric maps calculated   
with the different methods. Parametric maps calculated by 

(4)g (x) = |x| .

(5)g (x) = min +
1

1 + ex
(max − min) ,

F I G U R E  1  Neural network 
architecture, created with NN-SVG.21 
The network predicts x1 to x4, which are 
converted to the intravoxel incoherent 
motion (IVIM) parameters by the constrain 
function g(x) using Equations 4 (original 
network) and 5 (modified network), to add 
parameter constraints
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nonlinear regression were most noisy, followed by the Bayesian 
probability approach. The IVIM-NET method showed the least 
noise and most anatomical detail, and was in these terms compara-
ble to the ADC map. The fp maps estimated with nonlinear regres-
sion showed systematically higher values than the other methods, 
as shown in Figure 2. The Dp maps of nonlinear regression and 
IVIM-NETmod showed many regions with very high values.

None of the methods showed a systematic difference be-
tween the repeated measurements for any of the parameters. 
The calculated wCV estimates are shown in Figure 3. Notably, 

intrasession and intersession wCV was comparable and both 
VOIs show the same patterns when comparing the IVIM meth-
ods. The methods differ in terms of repeatability and, in gen-
eral, wCV was highest (worst) when parameters were estimated 
using nonlinear least squares (except for fp in the pterygoid).

This difference was often significant, especially for Dp. 
Significance is indicated in Figure 3, comparing the wCV 
values of each of the methods for each of the parameters. 
Tables of the p-values are available in Supporting Information 
Tables S1-S3. The median repeatability results of IVIM-NET 

Concept Description Quantification Application

Repeatability Variation between repeated 
measurements

wCV All methods

Consistency Variation between training runs of 
IVIM-NET on same measurements

CoV IVIM-NET

T A B L E  1  Explanation of analysis 
concepts used in this study

F I G U R E  2  Typical parametric maps of the estimated S0, ADC, true diffusion coefficient Dt. pseudo diffusion coefficient Dp, and perfusion 
fraction fp. Regions of interest delineating the tonsils are shown in the ADC map. The pterygoids are not situated at this level; examples of regions 
of interest can be found in the Supporting Information. Parametric maps of other IVIM network (IVIM-NET) instances can also be found in the 
Supporting Information. Abbreviation: IVIM-NETmod, modified IVIM-NET
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and IVIM-NETmod were mostly comparable to the repeatabil-
ity of the Bayesian approach, except for fp, in which the wCV 
of IVIM-NET was significantly better; IVIM-NETmod was 
only significantly better for fp in the tonsils. The median re-
peatability of IVIM-NET was better than for IVIM-NETmod, 
although the difference was rarely significant.

3.1 | Network consistency

Visual comparison of the parametric maps of the re-
peated network instances showed inconsistencies for both 

IVIM-NET and IVIM-NETmod; examples of this can be 
found in Supporting Information Figures S2-S4. One hun-
dred figures of the maps of each method are included in the 
Supporting Information. The network instances generally 
produced Dt maps with a similar distribution but different 
offset/scaling values. Comparing the average parameter val-
ues for IVIM-NET, the instances showed a CoV of 15% for 
Dt and fp, and 94% for Dp. The CoV for the pterygoids and 
tonsils were equal. The Dp maps sometimes showed a visu-
ally different distribution. The wCV values for the IVIM-
NET instances were also inconsistent, as shown by the box 
plots in Figure 4. For IVIM-NETmod, the average parameter 

F I G U R E  3  Within-subject coefficient of variation (wCV) of the parameters for each method. The median value of 100 training runs is 
displayed for the neural network methods (*P ≤ 0.05, **P ≤ 0.01). Abbreviations: LLS, linear least squares; NLS, nonlinear least squares

F I G U R E  4  Box plots (with Tukey-type whiskers) of wCV values for 100 runs of the neural networks
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values were more consistent, with CoVs of 5%, 9%, and 62% 
for Dt, fp, and Dp, respectively (again equal for pterygoids 
and tonsils). The wCV values for Dt and Dp were also more 
stable for IVIM-NETmod, as reflected by the smaller intervals 
of the box plots in Figure 4.

4 |  DISCUSSION

In this study, we quantified the test–retest repeatability of 
nonlinear regression, neural network–based, and Bayesian 
IVIM in the head and neck region. Our results show that 
these latter two fit approaches substantially outperform the 
conventional nonlinear regression approaches commonly 
used for IVIM fitting. Furthermore, although IVIM-NET has 
an improved test–retest repeatability, it has an additional un-
certainty in that repeated training of networks gives incon-
sistent results on identical data.

Repeatability estimates of ADC in the tonsils using linear 
regression fit reported in this study are similar to those re-
ported by Kang et al24 (also in the tonsils). Two other studies 
focused primarily on the primary lymph nodes, which makes 
it hard to compare results directly. Hoang et al report a repeat-
ability coefficient in percentages (15%), which is equivalent 
to a wCV of 5.3%.25 The wCV reported by Paudyal et al is 
2.38% and much lower than repeatability values found in this 
study.26 The generally larger volumes of metastatic lymph 
nodes might partly explain why the reported estimates are 
lower. In the case of the study of Paudyal et al, no reposi-
tioning of the subject in the magnet appears to have occurred 
between scans, which could be a major source of measure-
ment variability. This might also explain the difference in 
reported wCV between the two studies. In our present study, 
the subject was taken out of the scanner between scans for 
the intrasession repeatability estimates. No differences were 
seen between intrasession and intersession repeatability. This 
indicates that long-term (order of weeks) physiological vari-
ability over time was secondary to the measurement error and 
short-term (~30 minutes) physiological variability.

The neural network approach for calculating IVIM maps was 
introduced only recently. Visual interpretation of the images sug-
gests that more realistic parametric maps are produced by both 
neural networks compared with the other methods; these maps 
do not show isolated high or low pixels, and therefore appear to 
be least affected by noise in the acquisitions. This is in line with 
earlier observations from Barbieri et al.12 Our study has quanti-
fied the test–retest repeatability and shows that the network also 
outperforms linear regression regarding this aspect.

Network training for the entire data set took up to 1 hour for 
IVIM-NET and up to 5 minutes for IVIM-NETmod. Application 
of the network took only a couple of seconds for the entire 
data set. Barbieri et al had substantially less training data, and 
hence had training times of 5 minutes using the unmodified 

network. The large difference in training time in our data was 
primarily the result of decreasing the amount of data seen each 
epoch in the IVIM-NETmod. This major advantage of analysis 
speed, compared with the other methods investigated in this 
study (around half an hour per scan with nonlinear regression, 
and multiple hours per scan using Bayesian probability fitting), 
makes it viable for use in clinical practice.

Although IVIM-NET showed promising test–retest repeat-
ability, consistency of the neural network approach is currently 
still an issue. Our results show that, after renewed training, the 
parameter values and repeatability estimates vary. The IVIM-
NETmod method showed more consistent results, although the 
method is still unstable for Dp. Consistency of the approach 
might be improved by optimizing the starting point of the net-
work, such as by choosing different weight initialization or by 
training on a set of simulated data first. Avoiding to fit Dp (ie, fix-
ing it instead to an a priori estimate) has been shown to improve 
repeatability8,10 and might also improve network consistency.

A challenge for further research is to identify an accept-
able neural network that does not only give estimates with 
good repeatability, but is also consistent after retraining. Until 
such consistency is achieved, it is imperative that a single net-
work instance is used for comparative applications, such as in 
longitudinal studies. Use of separately trained networks will 
otherwise lead to biased results.

Although other DWI models27-29 are available, this study 
has been limited to the ADC and the IVIM model. Another 
limitation of our study is that we could not compare the meth-
ods in terms of accuracy, because a ground truth was unavail-
able in our study. We hope, therefore, that these methods will 
be included in future phantom studies. Finally, the choice of 
b-values was probably not optimal; b-value optimization may 
improve IVIM estimates.30,31

5 |  CONCLUSIONS

The processing speed of the neural network makes it viable for 
use in clinical practice. However, the inconsistency of training 
results is challenging. Our presented modifications in the neural 
network make this approach more consistent, although the out-
put still shows some inconsistency between different training 
runs on the same data set. Thus, the neural network approach 
needs to be further improved to identify neural networks that 
are both consistent and precise. Nonetheless, repeatability from 
the Bayesian and neural network approaches are superior to that 
of nonlinear regression for estimating IVIM model parameters.
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SUPPORTING INFORMATION
Additional Supporting Information may be found online in 
the Supporting Information section.

FIGURE S1 The ADC maps with examples of the regions of 
interest indicated
FIGURE S2 Example of Dt maps from three instances of 
intravoxel incoherent motion network (IVIM-NET) with sim-
ilar distribution but different absolute values

FIGURE S3 Example of Dp maps from four instances of 
IVIM-NET: two with similar distribution but different val-
ues (instances 1 and 2) and two with a different distribution   
(instances 5 and 11)
FIGURE S4 Example of Dp maps from three instances of a 
modified IVIM-NET (IVIM-NETmod) with different values
TABLE S1 Wilcoxon signed-rank test p-values, comparing 
paired within-subject coefficient of variation (wCoV) values 
of the methods for Dt
TABLE S2 Wilcoxon signed-rank test p-values, comparing 
paired wCoV values of the methods for Dp
TABLE S3 Wilcoxon signed-rank test p-values, comparing 
paired wCoV values of the methods for fp
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