23 research outputs found

    Multimodal analysis of GRC ageing process using Nonlinear Impact Resonance acoustic Spectroscopy

    Full text link
    Glass fibre Reinforced Cement (GRC) is a composite material composed of Portland cement mortar with low w/c (water/cement) ratio and high proportion of glass fibres. This material suffers from the ageing process by losing its strength with time because of its exposure to severe weather conditions. Ageing process damages the fibre surface and decreases the mechanical properties of the structural components made of this material. It reduces the elastic modulus and toughness of GRC. Fracture toughness is traditionally measured by four point bending tests. In a previous study by the authors it was observed that ageing related deterioration or damage of GRC could be monitored by Non Destructive Testing (NDT) techniques such as Non-linear Impact Resonance Acoustic Spectroscopy (NIRAS) and other ultrasonic techniques. The scope of this paper is to corroborate previous investigations and offer early damage detection capability by generating more experimental data points by optimizing location of the point of strike and thus generating more resonance vibration modes in NIRAS tests.The authors acknowledge the financial support of the Ministerio de Ciencia e Innovacion MICINN, Spain, and FEDER funding (Ondacem Project: BIA 2010-19933).Genovés Gómez, V.; Riestra García-San Miguel, C.; Borrachero Rosado, MV.; Eiras Fernández, JN.; Kundu, T.; Paya Bernabeu, JJ. (2015). Multimodal analysis of GRC ageing process using Nonlinear Impact Resonance acoustic Spectroscopy. Composites Part B: Engineering. 76:105-111. https://doi.org/10.1016/j.compositesb.2015.02.020S1051117

    Airborne non-contact and contact broadband ultrasounds for frequency attenuation profile estimation of cementitious materials

    Get PDF
    [EN] In this paper, the study of frequency-dependent ultrasonic attenuation in strongly heterogeneous cementitious materials is addressed. To accurately determine the attenuation over a wide frequency range, it is necessary to have suitable excitation techniques. We have analysed two kinds of ultrasound techniques: contact ultrasound and airborne non-contact ultrasound. The mathematical formulation for frequency-dependent attenuation has been established and it has been revealed that each technique may achieve similar results but requires specific different calibration processes. In particular, the airborne non-contact technique suffers high attenuation due to energy losses at the air-material interfaces. Thus, its bandwidth is limited to low frequencies but it does not require physical contact between transducer and specimen. In contrast, the classical contact technique can manage higher frequencies but the measurement depends on the pressure between the transducer and the specimen. Cement specimens have been tested with both techniques and frequency attenuation dependence has been estimated. Similar results were achieved at overlapping bandwidth and it has been demonstrated that the airborne non-contact ultrasound technique could be a viable alternative to the classical contact technique.The authors acknowledge the support from University College Cork (Ireland), Universidad Politecnica de Valencia and the Spanish Administration under grant BIA2014-55311-C2-2-P and Salvador Madariaga's Programme (PR2016-00344/PR2017-00658).Gosálbez Castillo, J.; Wright, W.; Jiang, W.; Carrión García, A.; Genovés, V.; Bosch Roig, I. (2018). Airborne non-contact and contact broadband ultrasounds for frequency attenuation profile estimation of cementitious materials. Ultrasonics. 88:148-156. https://doi.org/10.1016/j.ultras.2018.03.011S1481568

    Effect of carbonation on the linear and nonlinear dynamic properties of cement-based materials

    Full text link
    [EN] Carbonation causes a physicochemical alteration of cement-based materials, leading to a decrease of porosity and an increase of material hardness and strength. However, carbonation will decrease the pH of the internal pore water solution, which may depassivate the internal reinforcing steel, giving rise to structural durability concerns. Therefore, the proper selection of materials informed by parameters sensitive to the carbonation process is crucial to ensure the durability of concrete structures. The authors investigate the feasibility of using linear and nonlinear dynamic vibration response data to monitor the progression of the carbonation process in cement-based materials. Mortar samples with dimensions of 40 x 40 x 160 mm were subjected to an accelerated carbonation process through a carbonation chamber with 55% relative humidity and >95% of CO2 atmosphere. The progress of carbonation in the material was monitored using data obtained with the test setup of the standard resonant frequency test (ASTM C215-14), from a pristine state until an almost fully carbonated state. Linear dynamic modulus, quality factor, and a material nonlinear response, evaluated through the upward resonant frequency shift during the signal ring-down, were investigated. The compressive strength and the depth of carbonation were also measured. Carbonation resulted in a modest increase in the dynamic modulus, but a substantive increase in the quality factor (inverse attenuation) and a decrease in the material nonlinearity parameter. The combined measurement of the vibration quality factor and nonlinear parameter shows potential as a sensitive measure of material changes brought about by carbonation. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)The authors want to acknowledge the financial support of the Ministerio de Economia y Competitividad (MINECO), Spain, and FEDER funding (Ondacem Project: BIA 2010-19933). Jesus N. Eiras wants to acknowledge the financial support provided by Ministerio de Economia y Competitividad (MINECO), Spain, grant BES-2011-044624.Eiras Fernández, JN.; Kundu, T.; Popovics, JS.; Monzó Balbuena, JM.; Borrachero Rosado, MV.; Paya Bernabeu, JJ. (2016). Effect of carbonation on the linear and nonlinear dynamic properties of cement-based materials. Optical Engineering. 55(1):011004-1-011004-7. https://doi.org/10.1117/1.OE.55.1.011004S011004-1011004-755

    Nondestructive monitoring of ageing of Alkali resistant Glass fiber reinforced cement (GRC)

    Full text link
    Glass fiber reinforced cement (GRC) is a composite material made of portland cement mortar and alkali resistant (AR) fibers. AR fibers are added to portland cement to give the material additional flexural strength and toughness. However, ageing deteriorates the fibers and as a result the improvement in the mechanical properties resulted from the fiber addition disappears as the structure becomes old. The aim of this paper is monitoring GRC ageing by nondestructive evaluation (NDE) techniques. Two different NDE techniques (1) nonlinear impact resonant acoustic spectroscopy analysis and (2) propagating ultrasonic guided waves are used for this purpose. Both techniques revealed a reduction of the nonlinear behavior in the GRC material with ageing. Specimens are then loaded to failure to obtain their strength and stiffness. Compared to the un-aged specimens, the aged specimens are found to exhibit more linear behavior, have more stiffness but less toughness. Finally, undisturbed fragments on the fracture surface from mechanical tests are inspected under the electron microscope, to understand the fundamental mechanisms that cause the change in the GRC behavior with ageing.The authors want to acknowledge the financial support of the Ministerio de Ciencia e Innovacion MICINN, Spain, and FEDER funding (Ondacem Project: BIA 2010-19933) and BES-2011-044624. Also thanks to PAID-02-11 Program from Universitat Politecnica de Valencia.Eiras Fernández, JN.; Kundu, T.; Bonilla Salvador, MM.; Paya Bernabeu, JJ. (2013). Nondestructive monitoring of ageing of Alkali resistant Glass fiber reinforced cement (GRC). Journal of Nondestructive Evaluation - NDT and E International. 32:300-314. https://doi.org/10.1007/s10921-013-0183-yS30031432Bentur, A., Fibre, M.S.: Reinforced Cementitious Composites, 2nd edn. Taylor and Francis, New York (2007)Purnell, P., Short, N.R., Page, C.L.: A static fatigue model for the durability of glass fibre reinforced cement. J. Mater. Sci. 36(22), 5385–5390 (2001)Ferreira, J.G., Branco, F.A.: Structural application of GRC in telecommunication towers. Constr. Build. Mater. 21(1), 19–28 (2007)Bentur, A., Ben-Bassat, M., Schneider, D.: Durability of glass-fiber-reinforced cements with different alkali-resistant glass fibers. J. Am. Ceram. Soc. 68(4), 203–208 (1985)Cheng, J., Liang, W., Hu, Y., Chen, Q., Frischat, G.H.: Development of a new alkali resistant coating. J. Sol-Gel Sci. Technol. 27(3), 309–313 (2003)Liang, W., Cheng, J., Hu, Y., Luo, H.: Improved properties of GRC composites using commercial E-glass fibers with new coatings. Mater. Res. Bull. 37(4), 641–646 (2002)Payá, J., Bonilla, M., Borrachero, M.V., Monzó, J., Peris-Mora, E., Lalinde, L.F.: Reusing fly ash in glass fibre reinforced cement: a new generation of high-quality GRC composites. Waste Manag. 27(10), 1416–1421 (2007)Zhang, Y., Sun, W., Shang, L., Pan, G.: The effect of high content of fly ash on the properties of glass fiber reinforced cementitious composites. Cem. Concr. Res. 27(12), 1885–1891 (1997)Purnell, P., Short, N., Page, C.: Super-critical carbonation of glass-fibre reinforced cement. Part 1: mechanical testing and chemical analysis. Composites, Part A, Appl. Sci. Manuf. 32(12), 1777–1787 (2001)EN 1170-8:2008. Test method for glass-fibre reinforced cement. Cyclic weathering type testPurnell, P.: Interpretation of climatic temperature variations for accelerated ageing models. J. Mater. Sci. 39(1), 113–118 (2004)Enfedaque, A., Sánchez Paradela, L., Sánchez-Gálvez, V.: An alternative methodology to predict aging effects on the mechanical properties of glass fiber reinforced cements (GRC). Constr. Build. Mater. 27(1), 425–431 (2012)Litherland, K.L., Maguire, P., Proctor, B.A.: A test method for the strength of glass fibres in cement. Int. J. Cem. Compos. Lightweight Concr. 6(1), 39–45 (1984)Itterbeeck, P., Cuypers, H., Orlowsky, J., Wastiels, J.: Evaluation of the strand in cement (SIC) test for GRCs with improved durability. Mater. Struct. 41(6), 1109–1116 (2007)Guyer, R.A., Johnson, P.A.: Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys. Today 52, 30 (1999)Johnson, P.A.: Nonequilibrium nonlinear dynamics in solids: state of the art. In: Delsanto, P.P. (ed.) Universality of Nonclassical Nonlinearity, pp. 49–69. Springer, New York (2006)Guyer, R.A., McCall, K.R., Boitnott, G.N.: Hysteresis, discrete memory, and nonlinear wave propagation in rock: a new paradigm. Phys. Rev. Lett. 74(17), 3491–3494 (1995)Mayergoyz, I.D.: Mathematical Models of Hysteresis and Their Applications. Academic Press, New York (2003)Van Den Abeele, K.E.A., Carmeliet, J., Ten Cate, J.A., Johnson, P.A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part II: single-mode nonlinear resonance acoustic spectroscopy. Res. Nondestruct. Eval. 12(1), 31–42 (2000)Chen, J., Jayapalan, A.R., Kim, J.Y., Kurtis, K.E., Jacobs, L.J.: Rapid evaluation of alkali–silica reactivity of aggregates using a nonlinear resonance spectroscopy technique. Cem. Concr. Res. 40(6), 914–923 (2010)Leśnicki, K.J., Kim, J.Y., Kurtis, K.E., Jacobs, L.J.: Characterization of ASR damage in concrete using nonlinear impact resonance acoustic spectroscopy technique. Nondestruct. Test. Eval. Int. 44(8), 721–727 (2011)Bouchaala, F., Payan, C., Garnier, V., Balayssac, J.P.: Carbonation assessment in concrete by nonlinear ultrasound. Cem. Concr. Res. 41(5), 557–559 (2011)Eiras, J.N., Popovics, J.S., Borrachero, M.V., Monzó, J., Payá, J.: Nonlinear impact resonant acoustic spectroscopy to discern mechanical damage in cement based materials. In: 15th International Conference on Experimental Mechanics, Porto, Portugal (2012)Kundu, T.: Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization. CRC Press, Boca Raton (2004)Kundu, T.: Ultrasonic and Electromagnetic NDE for Structure and Material Characterization—Engineering and Biomedical Applications. CRC Press, Boca Raton (2012)Dutta, D., Sohn, H., Harries, K.A., Rizzo, P.: A nonlinear acoustic technique for crack detection in metallic structures. Struct. Health Monit. 8(3), 251–262 (2009)Aymerich, F., Staszewski, W.J.: Impact damage detection in composite laminates using nonlinear acoustics. Composites, Part A, Appl. Sci. Manuf. 41(9), 1084–1092 (2010)EN 1170-1:1998. Precast concrete products. Test method for glass-fibre reinforced cement. Measuring the consistency of the matrix, “Slump test” methodMontgomery, P.L.: A block Lanczos algorithm for finding dependencies over GF(2). In: EUROCRYPT ’95. Lecture Notes in Computer Science, vol. 921, pp. 106–120. Springer, Berlin (1995)EN 1170-5:1998. Precast concrete products. Test method for glass-fibre reinforced cement. Measuring bending strength, “complete bending test” methodRomero, R., Zúnica, L.R.: Métodos Estadísticos en Ingeniería. Universitat Politècnica València, Valencia (2005)Kundu, T.: Fundamentals of Fracture Mechanics. CRC Press, Boca Raton (2008)ASTM C 215:08. Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Frequencies of Concrete Specimens (2008)Hewlett, P.C.: Lea’s Chemistry of Cement and Concrete, 4th edn. Butterworth-Heinemann, Oxford (2003)Zhu, W., Bartos, P.J.M.: Assessment of interfacial microstructure and bond properties in aged GRC using a novel microindentation method. Cem. Concr. Res. 27(11), 1701–1711 (1997)Purnell, P., Buchanan, A.J., Short, N.R., Page, C.L., Majumdar, A.J.: Determination of bond strength in glass fibre reinforced cement using petrography and image analysis. J. Mater. Sci. 35(18), 4653–4659 (2000)Visalvanich, K., Naaman, A.E.: Fracture model for fiber reinforced concrete. J. ACI Proc. 80(2), 128–138 (1983)Kundu, T., Jang, H.S., Cha, Y.H., Desai, C.S.: A simple model to predict the effect of volume fraction, diameter, and length of fibers on strength variation of fiber reinforced brittle matrix composites. Int. J. Numer. Anal. Methods Geomech. 24, 655–673 (2000)Li, V.C., Maalej, M.: Toughening in cement based composites. Part II: fiber reinforced composites. Cem. Concr. Compos. 18, 239–249 (1996)Van Den Abeele, K.E.A., Johnson, P.A., Sutin, A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: nonlinear wave modulation spectroscopy (NWMS). Res. Nondestruct. Eval. 12(1), 17–30 (2000

    Anti-competitive practices in the air transport sector in European Union law

    No full text
    Przedmiotem niniejszej pracy jest charakterystyka praktyk ograniczających konkurencję oraz wskazanie głównych przyczyn ich stosowania przez przedsiębiorstwa funkcjonujące w sektorze transportu lotniczego - przewoźników lotniczych oraz porty lotnicze. W pierwszej kolejności omówione zostało unijne prawo konkurencji, ze szczególnym naciskiem na analizę kluczowych przesłanek zastosowania przepisów art. 101 i 102 TFUE. W dalszej kolejności pokrótce scharakteryzowane zostało unijne prawo lotnicze. Przedstawione zostały również sposoby definiowania rynków właściwych w sprawach z zakresu usług transportu lotniczego oraz usług świadczonych przez porty lotnicze. Ostatnie dwa rozdziały pracy poświęcone są tematyce porozumień ograniczających konkurencję oraz nadużywania pozycji dominującej w sektorze transportu lotniczego.The subject of this paper is to characterize restrictive practices and to indicate the main reasons for their use by undertakings operating in the air transport sector - air carriers and airports. Firstly, EU competition law was presented with particular emphasis on the analysis of key conditions for the application of art. 101 and art. 102 TFEU. Subsequently, EU aviation law was briefly characterized. Also presented were the methods of defining relevant markets in matters of air transport services and services provided by airports. The last two chapters focus on topics, such as restrictive agreements and abuse of dominance in the field of air transport

    Spin separation and exchange for quantum dots in the Overhauser field

    No full text
    corecore