428 research outputs found

    Micromechanics of sea urchin spines

    Get PDF
    The endoskeletal structure of the Sea Urchin, Centrostephanus rodgersii, has numerous long spines whose known functions include locomotion, sensing, and protection against predators. These spines have a remarkable internal microstructure and are made of single-crystal calcite. A finite-element model of the spine's unique porous structure, based on micro-computed tomography (microCT) and incorporating anisotropic material properties, was developed to study its response to mechanical loading. Simulations show that high stress concentrations occur at certain points in the spine's architecture; brittle cracking would likely initiate in these regions. These analyses demonstrate that the organization of single-crystal calcite in the unique, intricate morphology of the sea urchin spine results in a strong, stiff and lightweight structure that enhances its strength despite the brittleness of its constituent material

    A simple, effective, green method for regioselective 3-acylation of unprotected indoles

    Get PDF
    A fast and green method is developed for regioselective acylation of indoles in the 3-position without the need for protection of the NH position. The method is based on Friedel-Crafts acylation using acid anhydrides. The method has been optimized, and Y(OTf)3 in catalytic amounts is found to be the best catalyst together with the commercially available ionic liquid [BMI]BF4 (1-butyl-3-methylimidazolium tetrafluoro-borate) as solvent. The reaction is completed in a very short time using monomode microwave irradiation. The catalyst can be reused up to four times without significant loss of activity. A range of substituted indoles are investigated as substrates, and thirteen new compounds have been synthesized

    Proportional green time scheduling for traffic lights

    Get PDF
    We consider the decentralized scheduling of a large number of urban traffic lights. We investigate factors determining system performance, in particular, the length of the traffic light cycle and the proportion of green time allocated to each junction. We study the effect of the length of the traffic cycle on the stability region a urban traffic network. We derive a simple square-root cycle length rule which is optimal for certain road traffic junctions. We prove the maximal stability of a road network under a proportional fair or P0 control scheme. Further, we support of analysis through a simulation analysis of our policy on the Melbourne CBD urban road network

    Titanium dioxide - activated carbon composite for photoelectrochemical degradation of phenol

    Get PDF
    In this study, titanium dioxide (TiO2) and titanium dioxide – activated carbon composite (TiO2–AC) were prepared by sol-gel method for photoelectrochemical (PEC) applications. Characterization of the materials was performed by scanning electron microscope, energy dispersive X-ray analysis, Fourier transform infrared spectroscopy, X-ray diffraction, and diffuse reflectance spectroscopy. The results show that TiO2 was successfully loaded on activated carbon (AC), producing TiO2–AC with 2.61 eV of bandgap energy, lower than that of TiO2 (3.15 eV). Photoanodes based on TiO2 and TiO2–AC were fabricated and applied to PEC experiments for phenol degradation. In comparison with the TiO2 photoanode, the TiO2–AC one exhibited superior photocatalytic activity, which was indicated by a high current density and effective phenol removal. A mechanism of phenol PEC degradation on the TiO2–AC photoanode was proposed, which includes interaction between protonated phenol and active sites bearing oxygen on the photoanode surface. A kinetic model according to this mechanism was also established and fitted to experimental findings, resulting in rate constants of elementary reactions

    A Two-Stage Filter for High Density Salt and Pepper Denoising

    Get PDF
    Image restoration is an important and interesting problem in the field of image processing because it improves the quality of input images, which facilitates postprocessing tasks. The salt-and-pepper noise has a simpler structure than other noises, such as Gaussian and Poisson noises, but is a very common type of noise caused by many electronic devices. In this article, we propose a two-stage filter to remove high-density salt-and-pepper noise on images. The range of application of the proposed denoising method goes from low-density to high-density corrupted images. In the experiments, we assessed the image quality after denoising using the peak signal-to-noise ratio and structural similarity metric. We also compared our method against other similar state-of-the-art denoising methods to prove its effectiveness for salt and pepper noise removal. From the findings, one can conclude that the proposed method can successfully remove super-high-density noise with noise level above 90%. (c) 2020, Springer Science+Business Media, LLC, part of Springer Nature

    Relaxed Softmax for learning from Positive and Unlabeled data

    Full text link
    In recent years, the softmax model and its fast approximations have become the de-facto loss functions for deep neural networks when dealing with multi-class prediction. This loss has been extended to language modeling and recommendation, two fields that fall into the framework of learning from Positive and Unlabeled data. In this paper, we stress the different drawbacks of the current family of softmax losses and sampling schemes when applied in a Positive and Unlabeled learning setup. We propose both a Relaxed Softmax loss (RS) and a new negative sampling scheme based on Boltzmann formulation. We show that the new training objective is better suited for the tasks of density estimation, item similarity and next-event prediction by driving uplifts in performance on textual and recommendation datasets against classical softmax.Comment: 9 pages, 5 figures, 2 tables, published at RecSys 201

    Decomposing Star Formation and Active Galactic Nucleus with Spitzer Mid-Infrared Spectra: Luminosity Functions and Co-Evolution

    Get PDF
    We present Spitzer 7-38um spectra for a 24um flux limited sample of galaxies at z~0.7 in the COSMOS field. The detailed high-quality spectra allow us to cleanly separate star formation (SF) and active galactic nucleus (AGN) in individual galaxies. We first decompose mid-infrared Luminosity Functions (LFs). We find that the SF 8um and 15um LFs are well described by Schechter functions. AGNs dominate the space density at high luminosities, which leads to the shallow bright-end slope of the overall mid-infrared LFs. The total infrared (8-1000um) LF from 70um selected galaxies shows a shallower bright-end slope than the bolometrically corrected SF 15um LF, owing to the intrinsic dispersion in the mid-to-far-infrared spectral energy distributions. We then study the contemporary growth of galaxies and their supermassive black holes (BHs). Seven of the 31 Luminous Infrared Galaxies with Spitzer spectra host luminous AGNs, implying an AGN duty cycle of 23+/-9%. The time-averaged ratio of BH accretion rate and SF rate matches the local M_BH-M_bulge relation and the M_BH-M_host relation at z ~ 1. These results favor co-evolution scenarios in which BH growth and intense SF happen in the same event but the former spans a shorter lifetime than the latter. Finally, we compare our mid-infrared spectroscopic selection with other AGN identification methods and discuss candidate Compton-thick AGNs in the sample. While only half of the mid-infrared spectroscopically selected AGNs are detected in X-ray, ~90% of them can be identified with their near-infrared spectral indices.Comment: ApJ Accepted. emulateapj style. 16 pages, 9 figures, 4 table

    Hadronic B Decays Involving Even Parity Charmed Mesons

    Full text link
    Hadronic B decays containing an parity-even charmed meson in the final state are studied. Specifically we focus on the Cabibbo-allowed decays BˉDπ(ρ),DDˉs(),DˉsD()\bar B\to D^{**} \pi(\rho), D^{**}\bar D_s^{(*)}, \bar D^{**}_sD^{(*)} and BˉsDsπ(ρ)\bar B_s\to D_s^{**}\pi(\rho), where DD^{**} denotes generically a p-wave charmed meson. The BDB\to D^{**} transition form factors are studied in the improved version of the Isgur-Scora-Grinstein-Wise quark model. We apply heavy quark effective theory and chiral symmetry to study the strong decays of p-wave charmed mesons and determine the magnitude of the D11/2D13/2D_1^{1/2}-D_1^{3/2} mixing angle. Except the decay to D1(2427)0πD_1(2427)^0\pi^- the predictions for BD0πB^-\to D^{**0}\pi^- agree with experiment. The sign of D11/2D13/2D_1^{1/2}-D_1^{3/2} mixing angle is found to be positive in order to avoid a severe suppression on the production of D1(2427)0πD_1(2427)^0\pi^-. The interference between color-allowed and color-suppressed tree amplitudes is expected to be destructive in the decay BD1(2427)0πB^-\to D_1(2427)^0\pi^-. Hence, an observation of the ratio D1(2427)0π/D1(2427)+πD_1(2427)^0\pi^-/D_1(2427)^+\pi^- can be used to test the relative signs of various form factors as implied by heavy quark symmetry. Although the predicted BD1(2420)0ρB^-\to D_1(2420)^0\rho^- at the level of 3×1033\times 10^{-3} exceeds the present upper limit, it leads to the ratio D1(2420)ρ/D1(2420)π2.6D_1(2420)\rho^-/D_1(2420)\pi^-\approx 2.6 as expected from the factorization approach and from the ratio fρ/fπ1.6f_\rho/f_\pi\approx 1.6 . Therefore, it is crucial to have a measurement of this mode to test the factorization hypothesis. For BˉDˉsD\bar B\to \bar D_s^{**}D decays, it is expected that \bar D_{s0}^*D\gsim \bar D_{s1}D as the decay constants of the multiplet (Ds0,Ds1)(D_{s0}^*,D_{s1}) become the same in the heavy quark limit.Comment: 27 pages, Belle's new data on DD_s^{**} productions in B decays and on the radiative decay D_{s1}-> D_s\gamma are updated and discussed. Add two reference

    A Phenomenological Analysis of Heavy Hadron Lifetimes

    Full text link
    A phenomenological analysis of lifetimes of bottom and charmed hadrons within the framework of the heavy quark expansion is performed. The baryon matrix element is evaluated using the bag model and the nonrelativistic quark model. We find that bottom-baryon lifetimes follow the pattern τ(Ωb)τ(Ξb)>τ(Λb)τ(Ξb0)\tau(\Omega_b)\simeq\tau(\Xi_b^-)>\tau(\Lambda_b)\simeq\tau(\Xi_b^0). However, neither the lifetime ratio τ(Λb)/τ(Bd)\tau(\Lambda_b)/\tau( B_d) nor the absolute decay rates of the Λb\Lambda_b baryon and BB mesons can be explained. One way of solving both difficulties is to allow the presence of linear 1/mQ1/m_Q corrections by scaling the inclusive nonleptonic width with the fifth power of the hadron mass mHQm_{H_Q} rather than the heavy quark mass mQm_Q. The hierarchy of bottom baryon lifetimes is dramatically modified to τ(Λb)>τ(Ξb)>τ(Ξb0)>τ(Ωb)\tau(\Lambda_b)>\tau(\Xi_b^-)>\tau(\Xi_b^0)>\tau( \Omega_b): The longest-lived Ωb\Omega_b among bottom baryons in the OPE prescription now becomes shortest-lived. The replacement of mQm_Q by mHQm_{H_Q} in nonleptonic widths is natural and justified in the PQCD-based factorization approach formulated in terms of hadron-level kinematics. For inclusive charmed baryon decays, we argue that since the heavy quark expansion does not converge, local duality cannot be tested in this case. We show that while the ansatz of substituting the heavy quark mass by the hadron mass provides a much better description of the charmed-baryon lifetime {\it ratios}, it appears unnatural and unpredictive for describing the {\it absolute} inclusive decay rates of charmed baryons, contrary to the bottom case.Comment: 35 pages, to appear in Phys. Rev. The CDF result on the lifetime ratio of Lambda_b and B_d is discusse
    corecore