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Abstract We consider the decentralized scheduling of a large number of ur-
ban traffic lights. We investigate factors determining system performance, in
particular, the length of the traffic light cycle and the proportion of green time
allocated to each junction. We study the effect of the length of the traffic cycle
on the stability region a urban traffic network. We derive a simple square-root
cycle length rule which is optimal for certain road traffic junctions. We prove
the maximal stability of a road network under a proportional fair or P0 control
scheme. Further, we support of analysis through a simulation analysis of our
policy on the Melbourne CBD urban road network.

Keywords Traffic light control · Optimal Cycle Length · Stability · P0
policy · Proportional Fairness.

1 Introduction

Traffic congestion is one of the most apparent problems of modern society.
Aside from the dissatisfaction of the people who are stuck in traffic jams,
congestion also results in loss of productivity for the economy, has negative
environmental effects and also increases the probability of accidents due to
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unsafe driving behaviour. The growing population and the advancing economy
create densely populated urban areas with increasing traffic demand and little
space to build more roads. Solving this problem by increasing network capacity
by extending the infrastructure is not always possible and can have undesirable
environmental consequences. The other possible solution which presents itself
is to provide more efficient utilization of the capacity of the existing networks.
Thus one of the major challenges of the study of intelligent transport systems
is reaching this goal.

One of the key tools of traffic management is traffic signal control. Ef-
ficiently controlled traffic lights can positively influence the traffic flows at
intersections, which are often the bottlenecks of the road network. Studying
such systems are of interest to both the queueing theory and the traffic man-
agement community. These works aimed to design and optimize isolated or
coordinated signals that reactively resolve congestion in the urban networks.

In this paper, we consider stability of the decentralized control schemes in
urban traffic networks. Decentralized schemes are simple, scalable and can be
implemented in a modular form. Further, they can adapt implicitly using local
information to provide congestion relief in different traffic scenarios. These
provides redunancy that may not be present in centrally planned and fixed
time traffic control schemes. However, decentralized schemes do not alway
provide good stability properties or require (unavailable) information on traffic
route choice. The rule chosen by the local control is important.

We propose a policy based on the proportional fairness criterion. This
policy is completely decentralized, using only information from the queues
present at each intersection. In terms of division of timing, our model combines
a pre-timed approach with a vehicle-actuated approach since we use a set of
cycle times that are fixed a priori, whereas their split amongst the service
phases, which allow for more lanes to be served simultaneously, are decided on a
cycle-to-cycle basis upon the measured traffic by proportionally fair optimality
criteria. We form a stronger connection between the results of queueing theory
and traffic management, by using the formalism and methods of the former
whilst considering the cyclic nature and the specific features of the latter. In
summary, our contributions include

– developing a novel optimal traffic signal control policy for urban networks
based on proportionally fair allocation,

– introducing and analysing a polling-type model to determine a waiting
time-optimal time plan for the cycle lengths in said policy,

– conducting simulations to numerically validate the analytical results of the
polling model and to compare the performance of our proposed policy with
the performance of the P0 policy,

– providing a formal proof of stability for the underlying stochastic system
that is controlled by our scheme by applying a fluid limit approach.

This paper bridges key queueing theoretic concepts with policies and simu-
lation software familiar to the practioners in urban traffic control. The pro-
portional allocation scheme is a natural generalization of the P0 policy, a well
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known traffic control scheme Smith (1980). In order to investigate the new
policy important queueing theoretic ideas such as polling models and fluid
analysis are applied. The work here rigorizes and generalizes the work of Wal-
ton (2014), where a fluid analysis is provided, only in this paper, we provide a
rigorous fluid limit proof and a proof of positive recurrence. This is provided
for a more general model framework, which accounts for the acceleration of ve-
hicles, the cyclic nature of traffic times and the impact on the stability region
of bounded cycle lengths. The results are analysed through the SUMO simu-
lation enviroment, an urban mobility simulator regularly used in the analysis
and simulation of traffic management systems.1

As we show in Section 2 this work fits within a growing literature consid-
ering the applicability of the decentralized control paradigm, typically used in
communications systems, to the setting of urban mobility. See Lämmer and
Helbing (2008); Wunderlich et al (2008); Varaiya (2013); Wongpiromsarn et al
(2012); Savla et al (2013); Le et al (2013a); Savla et al (2014) for important
recent references. As mentioned above, in this paper we highlight key charac-
teristics found in queueing theoretic literature that are particularly applicable
to the urban road traffic setting.

The rest of the paper is organized as follows. In Section 2, we review the
relevant literature. In Section 3 we introduce the notation and dynamics of a
traffic network. In Section 4 we discuss the proportionally fair allocations of
splits of the cycle times and the effects of different choices for the length of
the cycles. We introduce a polling-type model to formulate optimality criteria
for the cycle times. We provide a set of limiting fluid equations to which the
dynamics of the stochastic system converges. We also formulate the stability
of the system through the stability of the fluid limit. We validate these results
numerically in Section 5. In Section 6 we give a formal proof of convergence
to the fluid limit and of the stability of the latter.

2 Literature Review

In this section we provide a literature review on traffic signal control. We dis-
cuss several of the most widely applied implementation and different optimiza-
tion formulations which have been applied to the problem. We then discuss
recent work on decentralized optimal control. Similar literature is discussed in
the earlier work Le et al (2013a), though we enlist more recent references and
also provide a more in-depth discussion of proportional fairness.

Broadly, there are two types of control that have been used for signal
control: pre-timed and vehicle-actuated controls; see Hamilton et al (2013) for
a comprehensive review. Pre-timed controls provide a repetitive cycle and a
fixed time division among the conflicting movements at the intersection. The
optimization of cycle times can be done in isolation or in a coordinated manner,
see Gartner et al (1975). Various approximations an analysis on queue lengths

1 For information on the SUMO package visit
http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931 read-41000/
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of fixed cycle traffic control can be found in Webster (1958), Miller (1963),
Heidemann (1994), van Leeuwaarden (2006) and van den Broek et al (2006).

Vehicle-actuated (or traffic-actuated) controls differ in that their signal
timings are not fixed, but assigned to the various service phases based on
the actual traffic present in the system. This requires real time measurements
which can be done by inductive loops, cameras, etc. The optimal signal timings
are then calculated on a cycle-to-cycle basis. Studies of these vehicle actuated
controls include Darroch et al (1964), Newell (1969), and Daganzo (1990).
Commonly used implementations of this type are SCOOT, see Hunt et al
(1981); UTOPIA, see Mauro and Taranto (1990); and the hierarchical scheme
RHODES , see Mirchandani and Head (2001). Combinations of both the pre-
timed and traffic-actuated control also exist such as the SCATS system from
Lowrie (1982). In the paper we consider a scheme with both pre-timed and
traffic-actuated controls. In particular, the length of traffic cycles will be de-
termined by a closed-loop optimization which operates on a slower time-scale
to the traffic-actuated phases within a cycle.

Another possible way of categorizing the control policies is based on the
approaches that have been proposed to optimize the signal plans. Examples in-
clude Mixed-Integer Linear Programming problems, see Dujardin et al (2011)
and Gartner et al (1975); dynamic programming, see Gartner (1983) and Mir-
chandani and Head (2001); Model Predictive Control (MPC) optimization
Tettamanti and Varga (2010), Le et al (2013b) and Shu et al (2011). However,
for a network with many intersections, most of the above methods represent
a centralized approach that require exponential complexity computations for
a global optimal solution and thus are not scalable. As noted in Papageorgiou
et al (2003), control strategies such as OPAC in Gartner (1983) and RHODES
in Mirchandani and Head (2001) are not real-time feasible for more than one
intersection. In fact, they actually became a decentralized scheme via forced
implementation at individual intersections that are heuristically coordinated
over the network, see N. H. Gartner and Andrews (2001).

Decentralized schemes on the other hand have the advantage of scalability
and simplicity of implementation. However, due to the fact that they mostly
use detailed real-time local information for which the technology was in most
cases not available until the emergence of wireless technology, they have been
studied to a lesser extent in the traffic management literature. The information
used to form optimum criteria in these cases can be such as the difference of the
number of vehicles queueing up in neighbouring intersections or the expected
number of vehicles to enter the intersection during the next cycle. Most of these
schemes have strong roots in packet scheduling for communication networks.
For example the policies of the first approach, which include work by Wunder-
lich et al (2008); Varaiya (2013); Wongpiromsarn et al (2012); Le et al (2013a)
are based on the max-pressure/back-pressure class of algorithms introduced
in Tassiulas and Ephremides (1992). However, stability results that hold for
max-pressure do not naturally extend to road traffic scheduling. The policy
must be aware of the routes or turning ratios of cars and must communicate
queue size information between junctions. Further, scheduling decisions are in-
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tegral and so do not naturally lend to a fixed traffic cycle. Progress alleviating
these specific issues can be found in Le et al (2013a) and Savla et al (2014).
However, in this paper, we fully address each of these issues by considering a
new decentralized scheme outside of the max-pressure family of controls.

Our approach can be connected to the notion of proportional fairness, as
was first described by Kelly (1997). It is studied widely, for example in mod-
els of highway traffic, see Gibbens and Kelly (2011), and Kelly and Williams
(2010); bandwidth sharing, see Massoulié (2007); or switch networks, see Wal-
ton (2014). In the context of queueing systems the policy was first mentioned
by Schweitzer (1979). In terms of urban road traffic early work of Smith (1980),
a so-called P0 local control policy and its variants Smith (2011) belong to
this category of control. More recently Lämmer and Helbing (2008) extended
further the P0 policy to include the switching cost between phases. Here a
heuristic mechanism was proposed to prevent possible instability, albeit with-
out a formal proof of stability for the distributed control strategy. Another
recent noteworthy result similar to ours was presented in Savla et al (2013).
Here a fluid model is considered where one lane is served at each time and a
set of monotonic distributed controls are considered based only on the occu-
pancy levels of incoming lanes. In this setting, the maximal stablility of signal
controls are presented.

3 Model description

We give a description of the main parameters of our model in this section
and the policy investigated in the next section. A table containing a list of
notations is given in Table 1.

3.1 Notations

We consider a network of traffic junctions, indexed by j. Each junction j ∈ J
consists of a number of in-roads, indexed by i ∈ I, which represent one or
more lanes of traffic. We denote an in-road being present at junction j by
the inclusion i ∈ j, whereas the junction which contains i by j(i). The in-
roads of a junction receive green time in a cyclic manner, when phases of
service are enacted. A service phase is a set of in-roads receiving green lights
simultaneously. Service phases are indexed by σ, and we let Σj is the set of
phases that are used at junction j. The inclusion i ∈ σ denotes the in-road
being served during phase σ, and Σi = {σ : i ∈ σ} denotes the set of phases
during which in-road i receives service. A link is a pair of in-roads: after the
service is completed, the vehicles from in-road i ∈ j may join the queue at
in-road i′ ∈ j′ if the link ii′ is included amongst the set of possible links
L ⊆ I × I. We let the vehicles follow a predefined, albeit unknown route. Let
us denote the set of all possible routes by R, and the routes themselves by
r ∈ R. A route is the sequence of in-roads that a vehicle visits as it navigates
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through the network. We will denote by i ∈ r if route r goes through in-road
i. If i is the first in-road on route r, we will denote that by i = ir0, and if
i is the last in-road on route r, we will denote that by i = irl . We will use
the notations ir− and ir+ for the in-roads that are, respectively, preceding and
following in-road i on route r.

We introduce the following notation to address the cyclic nature of the
system. Denote by

{
T jn
}
j∈J ,n∈N the sequence of cycle lengths for each junction

and define the sequence 0 = tj0 < tj1 < tj2 < . . . such that

tjn+1 = tjn + T jn+1.

We will also use the notation

Nj(t) = max{n ∈ N : tjn ≤ t}, (1)

to count the number of cycles completed by time t. Thus the end of the last
finished cycle is tjNj(t)

, and its length was T jNj(t)
. Under a fixed-time plan the

length of the cycle at each junction, T j will be fixed and we will denote the
vector of cycle length by T = (T j)j∈J .

At each cycle some time is spent switching between phases, during which
the vehicles do not receive service. We assume that this requires a fixed amount
of time Tswitch for every switch. We require every phase to be enacted in every
cycle. The effective service time Ejn – the period during which vehicles actually
receive service – is thus given by

Ejn = T jn − |Σj | · Tswitch (2)

for j ∈ J and n ∈ N.
The traffic controller’s job is to determine the cycle lengths and to allocate

proportions of the effective service time to the separate phases. We will denote
these proportions by p = (pσ)σ∈Σj ,j∈J . In order to utilize the given resources
fully, we have ∑

σ∈Σj

pσ = 1, (3)

for each junction j ∈ J . We introduce the allocation vector y(p) = (yi(p))i∈I
which shows the time proportions during which the in-roads receive service,
thus

yi(p) =
∑
σ∈Σi

pσ. (4)

Consequently the set of allocation vectors lie in the following convex set

Y =
{

(yi)i∈I ∈ (0, 1)I : yi =
∑
σ∈Σi

pσ,
∑
σ∈Σj

pσ = 1 ∀j
}
. (5)

Observe that with this notation in-road i will get green light for yiE
j(i)
n amount

of time in the given cycle.
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3.2 Queue size processes

The cars in a traffic light network form a queueing network, where the vehicles
waiting at every in-road form the queues. We assume each junction has knowl-
edge of the queue sizes present at each of its in-roads. We let Qi(t) denote the
queue size in-road i at time t. Under vehicle actuated control these queue sizes
are known to the controller. We use the notations Qj(t) = (Qi(t))i∈j for the
queue sizes at a junction, and Q(t) = (Qi(t))i∈I for the overall queue size
vector. These change due to the received service, the traffic joining in from
queues already served and from external arrivals. We introduce the route-wise
queue sizes, Xir(t), i.e. the number of vehicles queueing at in-roadi which are
following route r. Unlike Qi(t), the queue sizes Xir(t) are unknown to the con-
troller. We denote the route-wise queue size vector by X(t) = (Xir(t))i∈I,r∈R.
By definition

Qi(t) =
∑
r:i∈r

Xir(t). (6)

We work with the assumption that at every in-road the cars following different
routes are distributed homogeneously in the queue.

We define {Air(t)}i∈I,r∈R as the route-wise arrival processes and similarly
{Dir(t)}i∈I,r∈R as the route-wise departure processes. Thus the queue sizes
develop as follows,

Xir(t) = Xir(0) +Air(t)−Dir(t), (7)

where t ∈ R+. We note, that the route-wise arrivals described by Air(t) can be
external arrivals, if i = ir0, or internal arrivals if i 6= ir0. In the latter case they
equal the departures of the previous in-road along route r. The external arrivals
follow the process Ar(t) for each route r ∈ R. We assume, for simplicity, that
these are independent Poisson processes and use the vector notation (ar)r∈R
for the arrival rates. Thus, by definition

Air(t) =

{
Ar(t) if i = ir0,

Dir−r
(t) if i 6= ir0.

It follows that the long run arrival rate for in-road i is given by

ai =
∑
r:i∈r

ar.

The departures Dir(t) are positive counting processes. They depend on
both the properties of the junctions and the allocated green times. To model
these effects we define the random variables Snir as the number of cars served
at in-road i during its junction’s nth cycle. Thus we have

Dir(t
j(i)
n ) =

n∑
m=1

Smir (8)

for each r ∈ R, i ∈ I, and n ∈ N.



8 Péter Kovács et al.

We assume that for every in-road there exists a maximum rate with which
a steady stream of vehicles can be served, which is determined by the speed
limits on the road segments. We will denote the vector of maximum rates by
µmax = (µmax

i )i∈I . When yi is allocated to in-road i, this puts the following
bound on the received service

µmax
i yiE

j(i)
n ≥

∑
r:i∈r

Snir,

for each i ∈ I and n ∈ N. Further, we introduce the service function s(·) =
(si(·))i∈I : R+ 7→ RI+, where s(t) represents the expected number of cars that
can be served from each in-road whilst receiving a green light for t units of
time. We assume s(·) to be continuous, almost everywhere twice differentiable,
increasing and to have the following asymptotic behavior

si(t) ∼ µmax
i t, (9)

for each in-road i. This represents the idea that after an initial set-up phase,
needed for the vehicles in the queue to speed up, the cars can move without
interruption. With our assumption on the homogeneous distribution of vehicles

taking different routes among queues, we have, when Qi(t
j(i)
n ) > 0,

E[Snir|X(t
j(i)
n−1), Qj(t

j(i)
n−1)] =

Xir(t
j(i)
n−1)

Qi(t
j(i)
n−1)

si(yiE
j(i)
n ) (10)

for r ∈ R, i ∈ I and n ∈ N. We define the average rate at which vehicles are
served from each route-wise queue as

µir(t) =
E[Snir|X(t

j(i)
n−1), Qj(t

j(i)
n−1)]

T
j(i)
n

, (11)

when t
j(i)
n−1 ≤ t < t

j(i)
n , thus µir(t) is a piecewise constant function. We also let

µi(t) be the rate at which cars leave the in-roads. From (10) and (11) we have

µi(t) =
∑
r:i∈r

µir(t) =
si(yiE

j(i)
n )

T
j(i)
n

, (12)

for t
j(i)
n−1 ≤ t < t

j(i)
n . To ease our notation we will refer to µir(t

j(i)
n−1) as µnir.

When we wish to make dependence of y and T = T
j(i)
n explicit, we will write

µi(y, T ) for expression (12). We assume the actual number of cars leaving is
close to its expectation in that there exists a constant κ such that

Var(Snir) ≤ κT j(i)n (13)

for r ∈ R, i ∈ I and n ∈ N. This is a property which holds for numerous
kinds of stochastic processes such as Poisson-processes and renewal processes
with renewal epochs of finite variance. In essence, for (13) to be violated we
require the gaps between one car and the next to have infinite variance, while
in practice we imagine the time gap between cars to be of finite order.
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Notation Description
A(T ) Capacity set under cycle length T
ar Route r arrival rate
Air Cummulative route r arrivals at in-road i
cj Cycle length control parameter
C Capacity set
Dir Cummulative route r departures at in-road i

Ejn Effective service of nth cycle at j
i, I In-roads
ii′, L Links
ir0, irl First and last road on route r
ir−, ir+ Road before and after i on route r
j, J Junctions
j(i) Junction of in-road i
µnir service rate n cycle, route r, junction i
Nj(t) Number of cycles completed by time t
pσ Proportion of service for phase σ
Qi Queue size of in-road i
r, R Routes
σ, Σ Phases of service
si(t) Service rate of road i after t units of green time
Snir Number served cars in nth cycle, route r, road i

tjn Time of the nth cycle at junction j

T jn Cycle length of nth cycle at junction j
Xir Number of route r cars at in-road i
yi(p) Service to i under proportion p

Table 1: Key notations and descriptions alphabetically ordered.

4 Scheduling

The task of the traffic controller is to determine the cycle lengths and to
allocate proportions of them to the service phases and switching. In this section
we first present an algorithm which schedules the green times in a fair way.
Secondly we discuss the network’s capacity given the lengths of cycles. Thirdly
we investigate two polling models, which allocate service times in a similar
manner to the proportional fiar scheme, in order to determine which choice of
cycle lengths would minimize the average waiting time in the system. Finally
we summarize our suggested policy.

4.1 Proportionally fair allocation

We aim to allocate proportions of the cycle length to the service phases at each
junction in a way that maximizes throughput whereas maintaining service for
all in-roads with vehicles on them. A well-regarded way to do so is using
a proportional fair scheme. To fully utilize the resources and reach optimal
throughput we have to maximize si(t) for all i ∈ I, however (3) and (4) put
constraints on this problem. For the (n+ 1)th traffic cycle, the proportionally
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fair schedule is given by the solution to the following optimization problem.

maximize
∑
i∈j

Qi(t
j
n) log(si(E

j
n+1yi)),

subject to
∑
σ∈Σi

pσ = yi, ∀i ∈ j,∑
σ∈Σj

pσ = 1,

over y ≥ 0, pσ ≥ 0, ∀σ ∈ Σj .

(14)

This needs to be considered for each junction j ∈ J . Solving the problem
only requires local information, i.e. the knowledge of queue sizes present at
the in-roads of said junction. An advantage of using such a scheme is that the
optimization problem can be solved separately for each junction, thus requiring
significantly less effort.

We denote the solution to the optimization problem by p∗ = (p∗σ)σ∈Σj ,j∈J ,

y∗ = (yi(p
∗))i∈I , s∗ = (si(y

∗, T ))i∈I and µ∗ = (µi(y
∗, T ))i∈I respectively

for further purposes. In general (14) does not have an explicit solution, al-
though if s is given, it can be solved numerically. Since we need (14) to have a
single optimal solution, log(si(Ejyi(p))) has to be concave. This imposes the
condition

(s′i(t))
2 > si(t)s

′′
i (t) ∀t > 0, ∀i ∈ I (15)

on the service function, which can be derived from the necessary condition of
concavity,

(log(si(t)))
′′ =

(
s′i(t)

si(t)

)′
= −

(
s′i(t)

si(t)

)2

+
s′′i (t)

si(t)
< 0, ∀i ∈ I

and the fact that s is positive and increasing. Any subexponential function
is sufficient for (15) such as polynomial, piecewise linear or similar functions.
In special cases (14) can even be solved explicitly, for example if si(t) = vt
∀i ∈ I, i.e. the received service is a linear function of time with the same rate
for all in-roads, and all in-roads are served during exactly one service phase,
i.e. |Σi| = 1 ∀i ∈ I. Then the optimal schedule is given by

p∗σ =

∑
i∈σ Qi∑
i∈j Qi

∀σ ∈ Σj , (16)

which demonstrates the proportional nature of the proposed algorithm. We
note that the above scheme, (16), coincides with the P0 policy which was
previously studied in the context of road traffic congestion, see Smith (1980).
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4.2 Network capacity

The maximal throughput is constrained by the physical parameters of the
network, which we represent by the vector µmax. Thus the capacity can be
defined as

C = {(yiµmax
i )i∈I : y ∈ Y},

which is convex due to µmax being constant and the convexity of Y. The
maximal service that could be allocated to the in-roads is given by the case
when they receive uninterrupted green time, thus they form the extreme points
of C. These rates cannot be reached however, as we require switching in every
cycle, which alone interrupts service and also invokes a slower setup phase in
realistic service. To represent this we define the set of admissible service rates
as

A(T ) = {(µi(y, T ))i∈I : y ∈ Y},

which is clearly a subset of the capacity set. It depends on the cycle lengths
since by its definition in (12), the vector of service rates µ = (µi)i∈I is cycle-
length dependent. This dependency is present not only due to switching times,
but could also show in the service function as shown in the example in Ap-
pendix B. The problem however can be solved by a sufficient choice of cycle
lengths as stated in the following proposition. In the statement we useM◦ to
denote the interior of a set M.

Proposition 1 In the limit as T → ∞, the set of admissible service rates
A(T ) reaches the capacity set C, i.e. ∀a ∈ C◦ there exists a vector of cycle
lengths τ , such that if Tj > τj ∀j ∈ J , then

a ∈ A◦(T ).

A proof of Proposition 1 can be found in Section 6.1.
We have not addressed the possibility of eliminating phases, and the extra

switching they require, as another possible solution. However, from the traffic’s
point of view, this is a similar solution to increasing the cycle lengths since a
longer cycle can be viewed as consecutive shorter cycles, which are all serving
just one phase.

When choosing the cycle lengths we also have to consider the fact that
longer cycles and thus longer service phases produce longer waiting periods
for the vehicles on the in-roads receiving red light. There is clearly a trade-off
between the network’s stability and the average time vehicles spend in the
system depending on the cycle lengths. In Section 4.3 we discuss how long the
cycles should be to minimize the average waiting times.

4.3 Optimal cycle length

In this section we investigate a polling model which represents a single junc-
tion. This provides an example where the optimal scaling of cycle lengths can
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be determined. The schedule in the model does not necessarily follow strictly
the proportional fair allocation given by (14), instead it allocates service times
based on the average queue lengths. We chose average queue lengths to en-
able our results to translate to our policy, where expceted queue lengths are
available by taking averages on historic data- However, due to similarities in
the allocation method, the model gives us an opportunity to develop a rule for
optimal cycle length setting.

Consider a single junction with N competing in-roads. In each sched-
ule, only one in-road can be served. Let each in-road have Poisson arrivals
with rates a1, a2, . . . , aN and exponentially distributed random green times
S1, S2, . . . , SN . Let vehicles leave with rate µ1, µ2, . . . , µN once receiving ser-
vice, and define ρi = ai/µi. In order to have similar behaviour to the propor-
tionally fair policy the rates ν1, ν2, . . . , νN of the green times are chosen to
fulfill the following equation.

1
νi∑N
i=1

1
νi

=
Q̄i∑N
i=1 Q̄i

, (17)

where Q̄1, Q̄2, . . . , Q̄N are the respective average queue sizes. Let us denote
the expected cycle length, i.e. the sum of the green times and switching times
by τ . Thus

τ = ET = E

[
N∑
i=1

Si +NTswitch

]
=

N∑
i=1

1

νi
+NTswitch. (18)

To gain insight on the relation between the average queue lengths and the
cycle time let us deduct a system of equations using Little’s Law and PASTA
(Poisson Arrivals See Time Averages), cf. Wolff (1982). We follow the mean
value approach described on page 33 of Adan and Resing (2002). If we denote
the average waiting times by W̄1, W̄2, . . . , W̄N , then (by Little’s Law) we have
the following equations for i = 1, 2, . . . , N ,

Q̄i = aiW̄i,

and, using PASTA in combination with the FCFS discipline in each queue,

W̄i =
1

µi

(
1 + Q̄i

)1 + νi

∑
j 6=i

1

νj
+NTswitch


+
Tswitch

(
NTswitch +

∑
j 6=i

1
νj

)
∑N
j=1

1
νj

+NTswitch

+

∑
j 6=i

1
νj

(
1
νj

+ Tswitch

)
∑N
j=1

1
νj

+NTswitch

.

From these we can derive the following expressions for the expected queue
lengths given as a function of expected cycle length,

Q̄i(τ) =
1

1− ρiνiτ
×

ρiνiτ + ai ·
Tswitch

2 +
∑
j 6=i

(
1
νj

+ Tswitch

)2
τ

 , (19)
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for i = 1, 2, . . . , N . From (19) it is easily seen that for stability we need the
cycle length to fulfill

τ >
NTswitch

1−
∑N
i=1 ρi

. (20)

One would expect that T should be ‘fairly close’ to this limit in order to
keep the expected queue lengths and subsequently the waiting times low. This
would be the case if both the arrivals and the service times were deterministic
as shown in Appendix C. In this model however an optimal cycle length cannot
be determined in the general case, only if for all i = 1, 2, . . . , N we have ai = a
and µi = µ and thus νi = ν and ρi = ρ, and even then the calculations do not
yield an explicit formula, see Appendix D for the N = 2 case. On the other
hand in this case we can derive the proper scaling for the cycle lengths as the
system is in its heavy traffic limit as presented by the following proposition.

Proposition 2 When ρ→ 1/N the cycle length minimizing the average wait-
ing times has the following asymptotic behaviour

T 2 ∼
N∑
i=1

Q̄i. (21)

Proposition 2 is proven in Section 6.2.
Obtaining a similar exact result for a complex network setting or for a

junction controled by the propotional fair optimization would pose a much
harder problem. However, as we show in Section 5 setting the cycle lengths
on a scale according to this “square root rule” provides pleasant results even
when the actual service time allocation is determined by the proportional fair
scheduling scheme. Thus we are ready to formulate our proposed traffic light
control policy.

4.4 Policy

Given the described optimization in (14) and the results in Proposition 1 and
2, the proposed algorithm for traffic light setting can be summarized as follows.

– Form an unbiased estimate of the expected queue sizes, Q̃.2

– For a given time period3 a priori set up a sequence of cycle lengths for each
junction according to

T jn+1 = cj

√∑
i∈j

Q̃i(t
j
n), (22)

where cj is a control parameter determined by the traffic controller.

2 For a suggested estimation method see Appendix A
3 This can be a day or a few hours for example.
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– At the beginning of each cycle at all the junctions allocate green times to
each service phase according to the solution of (14) based on the queue
sizes present.

One of our main results is proving maximum stability of this scheduling
algorithm. Namely we are going to prove that the capacity set C coincides
with the stability region of the the ensuing stochastic network, i.e. that for
any set of arrival rates a = (ai)i∈I ∈ C◦ there is a set of allocations y, under
which the stochastic system is positive recurrent. Informally, this means that
any demand that does not exceed the physical parameters of the network can
be satisfied when the service is allocated by our policy. The stability proof is
following the fluid limit approach of Dai (1995). First we determine the fluid
limits of the processes described in Section 3.2. To prove positive recurrence it
suffices to show stability of these fluid limits. We are going to formalize these
steps in Section 4.5 and give a full proof in Section 6.

4.5 Fluid stability

We can associate a fluid model with the network if we introduce the terms

q(t) = (qi(t))i∈I ,

and
x(t) = (xir(t))i∈I,r∈R

as the fluid limits of Q(t) and X(t) respectively. If we introduce the notation

xir−r =

{
xi′r if i′ = ir−,

x0r if i = ir0,

and similarly

xir+r =

{
xi′r if i′ = ir+,

xlr if i = irl ,

and for every route r ∈ R, we can define auxiliary variables q0, ql and µ∗0, µ
∗
l

to have
x0r =

q0
µ∗0
· ar, (23)

and
xlr =

ql
µ∗l
· ar. (24)

The fluid limit of the system is then governed by the ODE

d

dt
xir(t) =

xir−r(t)

qir−(t)
µ∗ir−(q)− xir(t)

qi(t)
µ∗i (q), if qi(t), qir−(t) > 0, (25)

with
qi(t) =

∑
r:i∈r

xir(t). (26)
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Remark 1 We note that the derivatives in the fluid model equations are not
defined when the queue size components qi(t) are zero. However, whenever it
exists, the derivative of qi(t) at zero must be zero. Suppose that qi(t) = 0.
Using the fact that we know that the derivative exists and that qi(t + h) is
positive

dqi
dt

= lim
h↘0

qi(t+ h)− 0

h
≥ 0 and

dqi
dt

= lim
h↗0

qi(t+ h)− 0

h
≤ 0.

Thus dqi
dt = 0. Further, note that the deviative of qi(t) exists almost every-

where. (This same argument holds for xir.) As we see below in Proposition 3,
the fluid limit process is Lipschitz continuous. This implies, that the fluid limit
is differentiable except for a set of zero lebesgue measure and is the integral
of its derivative (Dudley, 2002, Chatper 7.2).

We formalize our result as follows. Let {X(c)
ir }c∈N be a sequence of versions of

our route-wise queue size processes, where ‖Xir(0)‖1 = c. We define

X̄
(c)
ir (t) =

X
(c)
ir (ct)

c
. (27)

Our next proposition formally states that the only possible limit for X̄
(c)
ir is

given by xir.

Proposition 3 The sequence of stochastic processes {X̄(c)}c∈N are tight with
respect to the topology of uniform convergence on compact time intervals.
Moreover, any weakly convergent subsequence of {X̄(c)}c∈N converges to a Lip-
schitz continuous process almost everywhere satisfying fluid equations (25),
(26).

A proof of Proposition 3 can be found in Section 6.3.
Now we are ready to formalize the statement considering the stability of

the system. The result is given by the following theorem.

Theorem 1 If the set of arrival rates are such that

a ∈ C◦, (28)

then the fluid limit in (25) is stable, i.e. there exists a time τ > 0 such that
for every fluid model {x(t)}t∈R+ satisfying (25) with ‖x(0)‖1 = 1,

xir(t) = 0,

for all t ≥ τ for each i ∈ r, and r ∈ R.

As discussed in Proposition 1, cycle lengths can be chosen for any interior
point of the capacity set such that the set of admissible rates will also contain
that point. We work with the assumption that such a T is in place, which
combined with (28) means that

a ∈ A◦(T ). (29)
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Fig. 1: Single Intersection Network.

This can be ensured by the traffic controller by choosing the control parameters
cj in (22) correctly, as an optimal choice provides a set of admissible rates
which is large enough, whilst maintainging shorter cycles to reduce waiting
times. Thus satisfying (29) also shows the correct traffic setting to follow.

5 Numerical results

In this section we investigate the optimal value of cj , which was introduced
in (22) and evaluate the performance of our proposed policy by comparing it
with fixed cycle proportional policies.

5.1 Parameter validation

Based on our results, Proposition 2, a good estimation for the optimal value
of cj is given by

cj = N · 2
√
Tswitch/µmax, (30)

where N denotes the number of competing in-roads at junction j, Tswitch

denotes the fixed switching time and µmax denotes the maximal service rate
of the in-roads.

The control parameter cj plays a crucial role in determining the cycle
lengths. A suboptimal value of cj may shrink the network’s capacity region as
discussed in Section 4.2, which can result increasing congestion. In this section,
we validate via simulation the optimal value of cj as given in (30).

We have considered a single intersection network topology as shown in
Figure 1a. Both the west and the east link were single lanes with length of
2000 meters. The long link length ensured that the arriving vehicles were
always able to enter the network, even in a congested period. The service
rate when receiving green traffic light was capped at 20 cars per minute. We
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run the simulation with different values of cj . For the demand, we considered
the vehicles entering the network from the west and the north link, passing
through the intersection before exiting the network. The arrivals followed a
Poisson process with symmetric arrival rates. In each run we have simulated 10
hours of traffic including 10 peak periods and 10 off-peak periods alternately.
The length for these periods was set as 30 minutes. The peak periods were
considered to have 10 cars per minute arriving on average, whereas the arrival
rate in off-peak period was 5 cars per minute.

The results are shown in Figure 1b. Note that the network parameters were
N = 2, Tswitch = 6, µmax = 20, hence according to (30) the estimated optimal
value of cj was cj = 8.5. The figure plots the average number of vehicles
present in the network throughout the whole run against different values of
cj . Since vehicles cannot disappear from the network through any other mean,
but exiting, a lower average number of vehicles can only occur due to shorter
travel times. It can be observed that the optimal value for cj is between 8 and
9 which is consistent with our estimate. For smaller values of cj , the traffic
flows are more frequently disrupted by switching, whereas at greater values
of cj , vehicles must wait longer for green traffic light. One can see form the
results in 1b, that this indeed produces longer queues.

5.2 Performance study for varied cycle lengths
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Fig. 2: Large CBD network with demands.

This section studies the performance of our proposed proportional fair pol-
icy by comparing it with the fixed cycle proportional policy in Le et al (2013a)
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Fig. 4: Total number vehicles in the network.

via simulation in the SUMO environment. We have considered the Melbourne
CBD network which is shown in Figure 2. It consists of 73 intersections and
266 links. Most of the roads are bi-directional except for Little Lonsdale Street,
Little Bourke Street, Little Collins Street and Flinder Lane which only have
a single lane mono-directional traffic. King Street and Russell Street are the
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Fig. 6: Congestion measure for different links in the network.

biggest roads in this scenario, each is modeled as 3 lanes each direction. Collins
Street has one lane each direction. All other roads have two lanes each direc-
tion. The link lengths are varied between 106 meters for the vertical links and
214 meters and 447 meters for the horizontal links except for the ingress links
at the edges. Each simulation run consisted of 4 hours including two peak pe-
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riods and two off-peak periods alternately, each lasting 1 hour. The fix routes
are indicated by the arrows in Figure 2 while the following numbers show the
arrival rate in peak/off-peak periods.

We have run multiple simulations sequentially and the cycle lengths were
pre-calculated before each run based on the ensemble average of queue lengths
of previous runs and according to (22). Given the identical demands, the dif-
ferences in queue evolution widely depended on the cycle lengths mentioned
above and, in turn, the cycle lengths would adapt to the new queue evolution
records. Naturally, we wanted to evaluate the proposed policy in convergence,
that is when the updates of queue lengths no longer changed the cycle lengths.
Particularly, we first ran the simulation 5 times with fixed 30 second cycle
lengths to obtain the initial queue length records. Then from the 6th time on,
the queue lengths were calculated according to (22) based on the ensemble
average queue lengths of the 5 previous runs.

We estimated the convergence of our procedure for determining cycle lengths,
see Figure 3. We evaluated the difference in cycle lengths at 4 fixed time points:
2500, 6000, 10000 and 12000 seconds respectively (see the vertical lines in Fig-
ure 4). At each time of these times we recorded the cycle lengths of each
intersection. We then compared the cycle lengths of the current run with
the average cycle lengths of the last 3 runs at each intersection and at each
time point. The maximum difference and average difference are shown in Fig-
ure 3. Intuitively, the smaller values of those two quantities indicate better
convergence. The results show strong convergence after the 13th run. For fur-
ther study we have chosen the estimated cycle lengths we ended with after
n = 13, 17 runs.

We compared the performance of our proposed policy with other two poli-
cies, namely fixed cycle proportional fair policies of cycle lengths with 30 and
60 seconds. Note that 60 seconds was the optimal cycle length for the fixed
cycle proportional policy as shown by simulation in Le et al (2013a). The re-
sults are presented in Figures 4, 5 and 6 in the form of total number of vehicles
in the network, average travel times and congestion measure respectively. The
latter represents the amount of time for every link that is spent in congestion,
which is defined by the density of the link reaching a threshold. In our case
this threshold was at 85% of the density representing a fully congested road,
where all the space is occupied by vehicles, thus the traffic cannot move.

As shown in Figure 4, the proposed policy in convergence has significantly
less congestion than the fixed cycle proportional fair policy with 30 second
cycles and is slightly better than the fixed cycle proportional fair policy with
60 second cycles. This is even more prevalent in Figure 6, where we can see
that the number of congested links and the time spent in congestion are lower.
In terms of travel times, our proposed policy outperforms the fixed cycle pro-
portional fair policy with 30 second cycles and is similar to the fixed cycle
proportional fair policy with 60 second cycles as seen in Figure 5. Thus we
can say that the simulation study agrees with our theoretical results, since we
aimed for minimizing the queue lengths in the network.
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Additionally, we have also repeated the whole simulation with a different
a starting point, e.g. the fixed cycle proportional policy with 60 second cycles,
and observed similar results in both convergence and performance, which indi-
cates the robustness of our policy. Practically, the network is able to achieve its
optimal cycle lengths by updating its cycle lengths based on historical queue
length data regardless of the network topology.

6 Proofs

In this section we formally prove our main theoretical results. Firstly, we prove
Proposition 1, which claims that the set of admissible service rates reaches the
capacity set in the limit as T → ∞. Secondly, we prove Proposition 2 which
justifies the square root rule given in (22). Then we prove convergence in the
fluid limit as stated in Proposition 3. Finally, we end the section by providing
a proof of stability according to Theorem 1.

6.1 Proof of Proposition 1

To prove Proposition 1, we have to look into the behavior of s. By (9) it holds
for any i, that

θi(t) =

∫ t
0
(µmax
i − s′i(z))dz

t
→ 0 as t→∞, (31)

i.e. for any δ > 0 there exists τi such that θi(t) < δ if t > τi. Now if we take
the definition (12), we can derive the following bound

µi(T ) =
si(yiE

j(i))

T j(i)

=

∫ yiT j(i)

0
µmax
i dz −

∫ yiT j(i)

0
(µmax
i − s′i(z))dz −

∫ yiT j(i)

yiEj(i) s
′
i(z)dz

T j(i)

≥yiµmax
i − θi(T j(i))− yiµmax

i |Σj |
Tswitch

T j(i)
.

(32)

Now if we choose any a ∈ C◦, then by definition of C there exists ε > 0 such
that

yiµ
max
i − ai > ε ∀i ∈ I

for some choice of the allocation vector y = (yi)i∈I . If we combine (31) with
(32) and the fact that Tswitch is constant, then we see that, for this allocation
we can choose τi such that

µi(τi) > yiµ
max
i − ε > ai.

By setting

τ =

(
τj := max

i∈j
τi

)
j∈J

,
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then for any T > τ we have

µi(T )− ai > 0 ∀i ∈ I,

which means that a ∈ A◦(T ), and thus proves Proposition 1. �

6.2 Proof of Proposition 2

Since we are investigating the heavy traffic behaviour of the system, we have
ρ→ 1/N . Using the symmetry, i.e., that τ/N = Tswitch + 1/ν by (18), we can
rewrite (19) as

Q̄i(τ) =
ρντ + λTswitch

2+(N−1)(τ/N)2

τ

1− ρντ
=
ρντ +

λT 2
switch

τ + (N−1)λτ
N2

1−Nρ−NρνTswitch
. (33)

If we assume that τ →∞, which should be the case by (51), then τ � Tswitch,
and 1/ν ∼ τ/N in the limit. Using this and (33), we have that

Q̄i ∼
Nρ+

λT 2
switch

τ + (N−1)λ
Nν

1−Nρ−NρνTswitch
∼ (N − 1)λ

N
· 1

(1−Nρ)ν −NρTswitchν2
,

which is an expression, for which a minimum in ν can be determined easily,
by taking the derivative. This gives

ν∗ =
1−Nρ

2NρTswitch
,

which by (18) and some algebraic calculations gives

τ∗ =
2N2ρTswitch

1−Nρ
+NTswitch =

N(1 +Nρ)

1−Nρ
· Tswitch, (34)

which clearly goes to infinity as ρ→ 1/N . Plugging this into (33) we get

Q̄i
∗

=
2λTswitch

N(1 +Nρ)
+

1

NTswitch
· τ∗ +

2λ

(1 +Nρ)Tswitch
· N − 1

N3
· τ∗2. (35)

Since τ∗ → ∞ on the right side of (35) the dominant term is the last one.
Thus by summing over the in-roads we get (21). Furthermore if we consider

the coefficient of τ∗2 and the facts, that λ = ρµ→ µ/N and
∑N
i=1 Q̄i = NQ̄i

we justify the formula in (30). �
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6.3 Proof of Proposition 3

From Robert (2003) we see that in order to prove the tightness of a sequence
{Z(c)}c, we must prove for each ε > 0 and t > 0 that

lim
δ→0

P

 sup
u,v:u,v<t,
|u−v|<δ

‖Z(c)(u)− Z(c)(v)‖1 ≥ ε

 = 0. (36)

The evolution of X̄
(c)
ir (t) is given by (7). Since we have only defined Dir(t) as a

counting process, we have to extend this definition to continuous time to have
a clean definition in (27). Thus, we set

Dir(t) =

Nj(i)(t)∑
n=1

Snir + µir(t) ·
(
t− tj(i)Nj(i)(t)

)
+∆ir(t− tj(i)Nj(i)(t)

), (37)

where ∆ir(t) represents the fluctuation in service during the cycles, which
comes from the ordering of the phases and stochastic effects. It is clearly
bounded as

|∆ir(t)| ≤ µmax
i t. (38)

We also point out that, as long as the cycle lengths are preset which is the
case in our policy, by the definition in (1) Nj(i)(t) is deterministic. Even more
so Nj(t) is bounded for all j ∈ J since

T jn ≥ |Σj | · Tswitch ∀n, ∀j ∈ J ,

and thus

Nj(t) ≤
⌈

t

|Σj | · Tswitch

⌉
. (39)

Now we are ready to demonstrate that (36) holds for X̄
(c)
ir (t) in the case

when i = ir0. The result then follows for all other cases since the arrivals there
are internal, since they equal the previous in-roads departures, for which we
show tightness here. Thus, by simple summation and the triangle inequality
we could repeat the same arguments as we make here for the departures at
source links. By (7), (27) and (37) we have

X̄
(c)
ir (t) = X̄

(c)
ir (0) +

1

c
[Ar(ct)−Dir(ct)]

=X̄
(c)
ir (0) +

1

c

Ar(ct)−Nj(i)(ct)∑
n=1

Snir − µir(ct)
(
ct−tj(i)Nj(i)(ct)

)
−∆ir

(
ct−tj(i)Nj(i)(ct)

)
=X̄

(c)
ir (0) + art+ L̄(c)

r (t)− M̄ (c)
ir (t)− 1

c

∫ ct

0

µir(s)ds−
1

c
∆ir

(
ct− tj(i)Nj(i)(ct)

)
,

(40)
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where we define the following terms,

L̄(c)
r (t) =

1

c
(Ar(ct)− arct),

M̄
(c)
ir (t) =

1

c

Nj(i)(ct)∑
n=1

(Snir − T j(i)n µnir). (41)

By the triangle inequality it suffices to prove (36) holds for each term of

the sum in (40) to prove that X̄
(c)
ir is tight. For X̄

(c)
ir (0) + art (36) trivially

holds.

For the integral we can use the fact that µir(t) is bounded by µmax
i for all

t, thus we have the Lipschitz-condition∣∣∣∣1c
∫ cu

0

µir(s)ds−
1

c

∫ cv

0

µir(s)ds

∣∣∣∣ < µmax
i |u− v|.

Thus with δ < ε/µmax
i (36) is satisfied.

For ∆ir we use the fact that it is bounded as described in (38), and that
we have pre-fixed cycle lengths. Thus∣∣∣∣1c∆ir(cu− tj(i)Nj(i)(cu)

)− 1

c
∆ir(cv − tj(i)Nj(i)(cv)

)

∣∣∣∣ ≤ 2µmax
i

c
sup

n≤Nj(i)

T j(i)n → 0

as c→∞ from (27), since supn≤Nj(i)
T jn cannot be infinite by definition.

The process M̄
(c)
ir (t) can also be defined as

M̄
(c)
ir (t) =

1

c

∞∑
n=1

I{n≤Nj(i)(ct)}(S
n
ir − T j(i)n µnir),

which definition is equivalent to (41) and helps our understanding of M̄
(c)
ir (t) as

a martingale. We can look at Snir as a series of random variables in {Fn}n∈N,
where {Fn}n∈N is a filtration running over the indices of finished cycles n,

which is generated by the random variables Snir. Then T
j(i)
n µnir are their ex-

pected values respectively by (11). Since Nj(i)(ct) is deterministic and bounded

by (39), by using Doob’s Optimal Stopping Theorem M̄
(c)
ir (t) is a martingale

on {Fn}n∈N. For m > n,

E
[
(Snir − T jnµnir)(Snir − T jmµmir)

]
=E

[
E[(Snir − T jnµnir)(Snir − T jmµmir)|Fn]

]
=E

[
(Snir − T jnµnir)E[(Snir − T jmµmir)|Fn]

]
= 0.

(42)
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Thus we can apply Doob’s L2 inequality and (13) to get

P

 sup
u,v:u,v<t,
|u−v|<δ

|M̄ (c)
ir (u)− M̄ (c)

ir (v)| ≥ ε


≤P
(

sup
u:u<t

|M̄ (c)
ir (u)| ≥ ε

2

)

≤ 4

ε2
E
[(
M̄

(c)
ir (t)

)2]
=

4

c2ε2

N(ct)∑
n=0

E
[(
Snir − T jnµnir

)2]

≤ 4

c2ε2

N(ct)∑
n=0

κT jn ≤
4κt

cε2
→ 0 as c→∞,

(43)

as the crossterms cancel out due to (42).

Since the external arrivals follow a Poisson-process, the process L̄
(c)
r (t) is

also a martingale, so once again we can use Doob’s L2 inequality,

P

 sup
u,v:u,v<t,
|u−v|<δ

|L̄(c)
r (u)− L̄(c)

r (v)| ≥ ε


≤P
(

sup
u:u<t

|L̄(c)
r (u)| ≥ ε

2

)
≤ 4

ε2
E
[(
L̄(c)
r (t)

)2]
=

4tar
cε2
→ 0 as c→∞.

(44)

We have now established the tightness of each of the respective terms in (40).

Thus our sequence of processes {X(c)
ir }c∈N are tight.

Therefore each subsequence of {Xc
ir(ct)/c}c has a weakly convergent sub-

sequence: Xc
ir(ct)/c→ x̃ir(t), where x̃ir is some deterministic process. By the

Skorohod Representation Theorem we may place these random variables on
the same probability space and assume that convergence holds almost surely.
Since Qci (ct)/c =

∑
r:r∈iX

c
ir(ct)/c, we can define q̃i(t) =

∑
r:r∈i x̃ir(t) to have

Xc
ir(ct)/c

Qci (ct)/c
→ x̃ir(t)

q̃i(t)
. (45)

Now we are left to prove that the limit is indeed given by the differentiability

condition (25). Note that we have also proved that L̄
(c)
r and M̄

(c)
ir converge in

distribution to zero for all r ∈ R and i ∈ I in (44) and (43) respectively. The
same holds for ∆ir as∣∣∣∣1c∆ir(ct− tj(i)Nj(i)(ct)

)

∣∣∣∣ ≤ µmax
i

c
sup

n≤Nj(i)

T j(i)n → 0. (46)
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By the piecewise constant property of µir, we also have

1

c

∫ ct

0

µir(s)ds =

∫ t

0

µir(cs)ds.

We are going to describe the limit in the i = ir0 case. In the case where i 6= ir0
the same holds for both the arrivals and the departures as what is described
below for the departures. By the definition (27) the partitioning (40), and the
convergences given by (43), (44) and (46) we have

lim
c→∞

X̄
(c)
ir (t) = x̃ir(0) + art− lim

c→∞

∫ t

0

µir(cs)ds

= x̃ir(0) + art−
∫ t

0

lim
c→∞

µir(cs)ds.

(47)

In the latter equation we have used the Skorohod representation theorem. To
arrive at the final conclusion we require that

lim
c→∞

µir(Q
c(cs))→ x̃ir(s)

q̃i(s)
µ∗i (q̃(s)). (48)

This is demonstrated in Lemma 4, which is contained in Appendix.
We apply (48) to the integral in (47) to deduce the differentiability prop-

erties of x̃. In particular, for any t such that x̃ir(t) > 0 and for h sufficiently
small that x̃ir(s) > 0 for all t ≤ s ≤ t+ h, we have that

x̃ir(t+ h)− x̃ir(t)
h

= ar +
1

h

∫ t+h

t

lim
c→∞

µir(cs)ds

= ar +
1

h

∫ t+h

t

lim
c→∞

µir(Q
c(cs))ds

= ar +
1

h

∫ t+h

t

x̃ir(s)

q̃i(s)
µ∗i (q̃(s))ds,

which gives the differentiability condition (25) as we take the limit h → 0,
thus x̃ir = xir and q̃i = qi for all indices. �

6.4 Proof of stability

Consider the function

H(x) =
∑
r∈R

∑
i∈r

xir log

(
xirµ

∗
i (q)

qiar

)
,

where we point out that µ∗i (q) is the solution to the optimization problem (14)
for junction j 3 i, and thus its value depends on the other queue sizes present
at j. However, due to the properties of proportionally fair optimization the
partial derivatives do not show this dependence, as stated in the following
lemma.
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Lemma 1
∂H

∂xir
= log

(
xirµ

∗
i (q)

qiar

)
.

Our next lemma puts a bound on H(x).

Lemma 2 The function H(x) is positive, bounded when ‖x‖1 = 1 and mini-
mized when x = 0.

Furthermore we will use a technical lemma which goes as follows.

Lemma 3 If u and v are two positive vectors with components indexed byM,
such that ∑

m∈M
um =

∑
m∈M

vm,

then ∑
m∈M

um log

(
um
vm

)
≥ 1∑

m∈M um
·
∑
m∈M

(um − vm)2.

Lemma 1, 2 and 3 are given proofs in the appendix. Now we can prove that
H(x) is a Lyapunov function for the fluid system (25). First, we show that the
following equalities hold

dH

dt
=
∑
r∈R

∑
i∈r

(
xir−r(t)

qir−(t)
µ∗ir− −

xir(t)

qi(t)
µ∗i

)
log

(
xirµ

∗
i

qiar

)

= −
∑
r∈R

ar
∑
i∈r

xirµ
∗
i

qiar
log


[
xirµ

∗
i

qiar

]
[
xir

+
rµ
∗
ir
+

qir
+
ar

]
 .

In the first equation we included i = ir0 too, which does not change the sum
since by (23)

log

(
x0rµ

∗
0

q0ar

)
= log 1 = 0.

By incrementing the first terms of the summation such that the coefficients
would become equal and multiplying and dividing by ar we gained the final
expression. Once again including i = irl does not change the sum, since by (24)

log

(
xlrµ

∗
l

qlar

)
= log 1 = 0.

Now we can bound the derivative of the proposed Lyapunov function as

dH

dt
≤ −

∑
r∈R

ar [∑
i∈r

xirµ
∗
i

qiar

]−1
·
∑
i∈r

[
xirµ

∗
i

qiar
−
xir+rµ

∗
ir+

qir+ar

]2
≤ −

∑
r∈R

a2r
µ̃

∑
i∈r

[
xirµ

∗
i

qiar
−
xir+rµ

∗
ir+

qir+ar

]2 ≤ −ε,
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for some ε > 0. In the first inequality we applied Lemma 3. In the second
inequality we applied that ∑

i∈r

xirµ
∗
i

qiar
≤ µ̃

ar
,

where we introduced
µ̃ = |I|max

i∈I
µmax
i .

To prove the third inequality we first look into the conditions under which the
sum could equal zero. To have that for each in-road i ∈ r on each route r ∈ R
we would need

xirµ
∗
i

qiar
−
xir+rµ

∗
ir+

qir+ar
= 0.

This would mean that the terms are constant along each in-road i along a
route, including the auxiliary i0, for which the fraction was set as 1. Thus,
this requires that

ar =
xirµ

∗
i

qi
∀i ∈ r, ∀r ∈ R.

By summing over for each in-road, we get∑
i∈I

ai =
∑
r∈R

∑
i:i∈r

ai =
∑
r∈R

ar =
∑
i∈I

µ∗i .

This contradicts (29), since µ∗i clearly belongs to the boundary of A(T ). Thus
(6.4) cannot hold and H(x) has a strictly negative drift. Since by Lemma 2
H(x) = 0 only if x = 0, for all x(0) such that H(x(0)) ≤ h for some positive
constant h, we have for all t ≥ h/ε that

q(t) = 0.

By definition this means that the fluid system is stable. �
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A On the estimation of queue lengths

In this section we shortly discuss the estimation of the cycle lengths Q̃ introduced in Section
4.4. For our proposed policy to be stable the only condition needed on these estimators is
that they have to be unbiased, i.e. EQ = EQ̃. However, for practical purposes we suggest to
use a “moving average”, which is given as follows

Q̃(U) =

Z∑
u=1

αuQ(U − u),

where Q(U) denotes the measured queue size at sampling time U , Z denotes the number
of samples considered in the estimation process and αu denotes the weights put on each
sample, with

∑Z
u=1 αu = 1. An example could be the following. To provide the estimation

for a certain point of the day consider the samples from the previous days at the same time
making a distinction between workdays and holidays and set α to be linearly decreasing,
which would mean that the most recent measurements would have the highest weights. We
also point out that the cycle length settings described in Section 5 follow a similar method
when using the results of previous runs to make the queue length estimations.

B Example showing the dependencies of the set of admissible
service rates

Take for all in-roads the following service function (with time units given in minutes),

si(t) =

{
10t, if t ≤ 0.1

1 + 30(t− 0.1) if t > 0.1,

which includes the mentioned setup phase. If we take the switching times Tswitch = 0.1 min,
then at a single junction with two competing in-roads, that both have 11 vehicles/min
arrivals on average, the queues will build up if Tj = 1.2 min. The same junction can however
be served, if Tj = 2.4 min. Even more interesting is the fact that in the Tj = 1.2 min case, if
one in-road has 22 vehicles/min arrivals on average, while there is no traffic arriving to the
other in-road, the junction can be served again. Thus the arrival vector (11, 11) is outside
of the set A(T ), even though both (22, 0) and (0, 22) are in and (11, 11) is their convex
combination.
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C Example of a polling model with deterministic rates

Consider a junction with N competing in-roads, each having identical, deterministic arrival
rates λ and identical constant service rates µ when receiving service. Scheduling green times
Gi proportionally to the average queue lengths results in allocating 1/N of the effective time
to each phase. Thus each in-road will be idle for

T −Gi =
N − 1

N
· T + Tswitch.

During the idle period a queue will build up, which will leave with all new arrivals during
the green period. Thus at the end of the idle period, the queue size present will be

Qidle = λ

(
N − 1

N
· T + Tswitch

)
,

which can empty out in

T empty =
λ

µ− λ
·
(
N − 1

N
· T + Tswitch

)
.

If the green time allocated is shorter than T empty, then the queues never empty out, instead
they grow infinitely large and consequently the waiting times become infinitely large too. If
Gi ≥ T empty, then the queues will receive green light even after they emptied out which will
result in all subsequent arriving vehicles leaving immediately with the queue size starting
to grow from 0 again during the idle period. The average queue size in this case can be
calculated by

Q̄ =
1

T

∫ T

0
Q(τ)dτ =

1

T

[
1

2
·
λµ

µ− λ
·
(
N − 1

N
· T + Tswitch

)2
]

=
T

2
·
λµ

µ− λ

[
Tswitch

T
+
N − 1

N

]2
.

Thus by Little’s law the average waiting time is

W̄ (T ) =
Q̄

λ
=
T

2
·

µ

µ− λ

[
Tswitch

T
+
N − 1

N

]2
, (49)

if the system is stable. In order to have this quantity, we need Gi ≥ T empty, which happens
if

T ≥
µ

µ−Nλ
· 2NTswitch, (50)

from where we can also see that µ > Nλ is needed for stability. Since the function in (49) has
its minimum at T = N

N−1
Tswitch and is strictly increasing for bigger values of T , the vehicles

have minimal average waiting time if there is an equality in (50). Thus in a deterministic
system the shortest cycle length which ensures stability is the optimal choice.

D Determining the optimal cycle lengths for the symmetric case of
the polling model in Section 4.3

Let us consider the polling model of Section 4.3. Take the N = 2 case in symmetry, i.e.
assume that the two phases behave in the same way, λ1 = λ2 = λ, µ1 = µ2 = µ, . This
allows us to give a system of equations with (17), (19) and (18), from which ν can be
eliminated. Assuming that τ takes the form of

τ =
2(Tswitch + ε)

1− 2ρ
, (51)
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thus assuring (20) with the perturbation ε being positive, we can express the expected queue
lengths as a function of ε as

EQ(ε) =
1

2µ(1− 2ρ)2ε(Tswitch + ε)

×
[
4T 2

switch + 4ε2 − 8µρ2T 3
switch + 6µρT 3

switch + 8T 3
switchµρ

3 − 8ρT 2
switch

−µT 3
switch + µε3 − 2µρεT 2

switch − 2µρε2Tswitch + 4µρ2εT 2
switch

−16ρεTswitch + 4µε2Tswitch + 3µεT 2
switch + 8εTswitch − 8ρε2

]
.

Finding the minimum of this amongst positive values for ε leads to solving a fourth order
polynomial, which is a doable task. We will save the reader from the lengthy symbolic
expression. This tells us, that ε has a clear positive value, and is not just a small perturbation
contrary to what could be expected from the result of Appendix C. Thus in a stochastic
system one should do more than find the minimal stable value in order to find optimality.
Therefore the approximations used by our policy, which are based on the results of Section
4.3 are well founded.

E Proofs for lemmas used in the stability proof

In the proof of Proposition 2, we required the following lemma which we now prove.

Lemma 4 In the case of x̃ir > 0 the following holds for the fluid limit of µir(Q
c(cs)),

lim
c→∞

µir(Q
c(cs))→

x̃ir(s)

q̃i(s)
µ∗i (q̃(s)). (52)

Proof To prove our statement let us use the definition of µir, which is given in (11). Thus

µir(Q
c(cs)) =

Xc
ir(cs)

Qc(cs)

si(Eiyi(Q
c(cs)))

Ti
. (53)

For the condition that x̃ir > 0, we need Xc
ir(ct) → ∞ as c → ∞. Thus Qci (ct) → ∞ as

c → ∞, and the same holds for
√
Qci (ct). By the policy described in Section 4.4, we have

Ei(c)→∞ as c→∞, since Ei ∝
√
Qi. Also by the definition in (2), we have that

Ei(c)

Ti(c)
→ 1, (54)

as c→∞. Furthermore, by the assumption (9), we have that

si(ky)

k
→ µmax

i , (55)

as k → ∞. Finally, by Lemma A.3 in Kelly and Williams (2004), we have that yi(q̃) is
continuous in q̃ for all indexes i with q̃i > 0. Thus if x̃ir > 0, we have

yi(Q
c(cs)) = yi

(
Qc(cs)

c

)
→ yi(q̃(s)), (56)

from which we can deduce that

µi(Q
c(cs)) =

s∗i (Eiyi(Q
c(cs)))

Ti
→ y∗i (q(s))µmax

i = µ∗i (q(s)). (57)

If we combine the assumption in (10) with (57), we can conclude that (52) holds.�
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In this section we use the relative entropy, which is defined for two probability distribu-
tions u and v, which are both defined on the same finite set M, as

D(u‖v) =
∑
m∈M

um log

(
um

vm

)
. (58)

We note that D(u‖v) is strictly non-negative and the following bound also holds on it,

Lemma 5 (Pinsker’s Inequality)

D(u‖v) ≥
∑
m∈M

|um − nm|. (59)

E.1 Proof of lemma 1

We prove this lemma by taking the derivatives from first principles.
We first suppose that xir > 0. Let us use the notation xhir = xir + h and all other

components of x remain the same. Naturally qhi = qi + h, while qh
i′ = qi′ for i′ 6= i. Then

for h > 0,

H(xh)−H(x)

h

=
1

h

∑
r∈R

∑
i∈r

xhir log

(
xhirµ

∗
i (qh)

qhi ar

)
−
∑
r∈R

∑
i∈r

xir log

(
xirµ

∗
i (q)

qiar

)
≥

1

h

∑
r∈R

∑
i∈r

xhir log

(
xhirµ

∗
i (q)

qhi ar

)
−
∑
r∈R

∑
i∈r

xir log

(
xirµ

∗
i (q)

qiar

)
=

1

h

[
(xhir log xhir − xir log xir) + (qhi log qhi − qi log qi)

]
+ log

(
µ∗i (q)

ar

)
,

(60)

where the inequality derives from the fact that µ∗i (q) is suboptimal for the proportional

fair optimization with the parameter choice qh. On the other hand if we leave the first
summation in the first equality the same, but exchange µ∗i (q) with µ∗i (qh), we can apply
the same logic, thus

H(xh)−H(x)

h

=
1

h

∑
r∈R

∑
i∈r

xhir log

(
xhirµ

∗
i (qh)

qhi ar

)
−
∑
r∈R

∑
i∈r

xir log

(
xirµ

∗
i (q)

qiar

)
≤

1

h

∑
r∈R

∑
i∈r

xhir log

(
xhirµ

∗
i (qh)

qhi ar

)
−
∑
r∈R

∑
i∈r

xir log

(
xirµ

∗
i (qh)

qiar

)
=

1

h

[
(xhir log xhir − xir log xir) + (qhi log qhi − qi log qi)

]
+ log

(
µ∗i (q)

ar

)
.

(61)

These two bounds can be derived the same way when h < 0. Since the q 7→ µ∗(q) function
is continuous by the properties of the service function, taking the limit as h → 0 on these
bounds imply that

∂H(x)

∂xir
= log xir − log qi + log

(
µ∗i (q)

ar

)
, (62)

as stated in Lemma 1.
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We now suppose that xir = 0. (We now pursue an argument similar to Lemma 7 in

Anselmi et al (2013).) We know that that dxir
dt

= 0, recall Remark 1. Take

p(t) =
xir(t)µ

∗
i (q(t))

qi(t)ar
.

Note that p(t) is bounded above by pmax. Now, note that xir(t) log(p(t)/pmax) is negative,
so we have

dxir log(p/pmax)

dt
= lim
h↘0

xir(t+ h) log(p(t+ h)/pmax)− 0

h
≤ 0,

dxir log(p/pmax)

dt
= lim
h↗0

xir(t+ h) log(p(t+ h)/pmax)− 0

h
≥ 0.

Therefore
dxir log(p/pmax)

dt
and thus

dxir log p

dt
=
dxir log(p/pmax)

dt
+
dxir log(pmax)

dt
= 0.

�

E.2 Proof of lemma 2

Observe that H(x) can be expressed as linear combination of relative entropy terms as

H(x) =
∑
i∈I

qiD

((
xir

qi

)
r3i
‖
(
ar

ai

)
r3i

)
+
∑
i∈I

qi log

(
µ∗i (q)

ai

)

≥
∑
i∈I

qi log

(
µ∗i (q)

ai

)
≥ 0.

(63)

The first inequality is a consequence of the positivity of relative entropy, whereas the second
follows by the optimality of µ∗(q) and (29). From the entropy equality we see that H(x) is
continuous for ‖x‖1 = 1 and so bounded. Further the inequalities above hold with equality
iff x = 0. �

E.3 Proof of lemma 3

In order to prove this lemma we define ûm, and v̂m respectively, as follows,

ûm =
um∑

m′∈M um′
. (64)

Then by applying the definition of relative entropy on ûm and v̂m and applying Pinsker’s
Inequality, we get ∑

m∈M
um log

(
um

vm

)
= D(û‖v̂)

∑
m∈M

um

≥

 ∑
m∈M

|ûm − v̂m|

2 ∑
m∈M

um

=
1∑

m∈M um

 ∑
m∈M

|um − vm|

2

≥
1∑

m∈M um

∑
m∈M

(um − vm)2 ,

(65)
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by rearranging after the second equality, applying (3) and bounding afterwards. �


