14 research outputs found

    Geography, environment, and colonization history interact with morph type to shape genomic variation in an Arctic fish

    Get PDF
    Funding Information: Thanks go to our editor and three anonymous reviewers whose suggestions greatly improved this study. We thank S. Avery, J. Callahan, S. Duffy, S. Hann, L. Pike, R. Solomon, A. Walsh, for assistance with sample collection and fieldwork. We are grateful to X. Dallaire and J.S. Moore for providing samples from Ungava, Bay (HAB) and to L. Bernatchez for his valuable comments on an earlier version of this manuscript. Thanks to Parks Canada for allowing us access to the Torngat Mountains National Park and the Nunatsiavut government for allowing us to collect samples from their lands. Thanks to A. Belay at Mount Sinai Hospital for her help with sequencing, A. Mesmer for help with genotyping, and S. Lehnert for insightful data analysis suggestions. We also thank the Institute for Biodiversity, Ecosystem Science, and Sustainability of the Department of Environment and Conservation of the Government of Labrador and Newfoundland for funding for this project; NSERC for the Strategic Grant STPGP 430198 and Discovery Grant awarded to DER, for the CGS‐D awarded to SJS; the Killam Trust for the Level 2 Izaak awarded to SJS; and the Government of Nova Scotia for the Graduate Scholarship awarded to SJS. Publisher Copyright: © 2023 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.Peer reviewedPublisher PD

    Towards incorporation of blue carbon in Falkland Islands marine spatial planning: a multi-tiered approach

    Get PDF
    Ecosystem-based conservation that includes carbon sinks, alongside a linked carbon credit system, as part of a nature-based solution to combating climate change, could help reduce greenhouse gas levels and therefore the impact of their emissions. Blue carbon habitats and pathways can also facilitate biodiversity retention, aiding sustainable fisheries and island economies. However, robust blue carbon research is often limited at the scale of regional governance and management, lacking both incentives and facilitation of policy-integration. The remote and highly biodiverse coastal ecosystems and surrounding continental shelf can be used to better inform long-term ecosystem-based management in the vast South Atlantic Ocean and sub-Antarctic, to synergistically protect both unique biodiversity and inform on the magnitude of nature-based benefits they provide. Understanding key ecosystem information such as their location, extent, and condition of habitat types, will be critical in understanding carbon pathways to sequestration, threats to this, and vulnerability. This paper considers the current status of blue carbon data and information available, and what is still required before blue carbon can be used as a conservation management tool integrated in national Marine Spatial Planning (MSP) initiatives. Our research indicates that the data and information gathered has enabled baselines for a number of different blue carbon ecosystems, and indicated potential threats and vulnerability that need to be managed. However, significant knowledge gaps remain across habitats, such as salt marsh, mudflats and the mesophotic zones, which hinders meaningful progress on the ground where it is needed most

    How genomics can help biodiversity conservation

    Get PDF
    The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics.info:eu-repo/semantics/publishedVersio

    The era of reference genomes in conservation genomics

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Molecular evidence for multiple introductions of the banded grove snail (Cepaea nemoralis) in North America

    No full text
    International audienceGlobal identification and monitoring programs for invasive species aim to reduce imminent impacts to biodiversity, ecosystem services, agriculture and human health. This study employs a 658 base pair fragment of the cytochrome c oxidase subunit I (COI) gene to identify and categorize clades of the banded grove snail (Cepaea nemoralis (Linnaeus, 1758)) from native (European) and introduced (North American) ranges using a maximum-likelihood phylogeny and haplotype networks. This work corroborates the existence of eight clades within Cepaea nemoralis and further identified three clades that were common to both Europe and North America (A, D, O). Clades A and D were found in eastern Canada, Ontario, and British Columbia, while clade O was restricted to Ontario, possibly introduced from Poland or central Europe. Haplotype networks suggest clade A was introduced from northern Europe while clade D was introduced from western and central Europe. Networks contained many private haplotypes and a lack of haplotype sharing, suggesting strong genetic structure in this system, possibly resulting from reduced dispersal in this species. This study describes the contemporary distribution of C. nemoralis in Canada and demonstrates the efficacy of DNA barcoding for monitoring the spread of invasive species, warranting its widespread adoption in management policies

    Patterns of DNA Barcode Variation in Canadian Marine Molluscs

    No full text
    <div><p>Background</p><p>Molluscs are the most diverse marine phylum and this high diversity has resulted in considerable taxonomic problems. Because the number of species in Canadian oceans remains uncertain, there is a need to incorporate molecular methods into species identifications. A 648 base pair segment of the cytochrome <i>c</i> oxidase subunit I gene has proven useful for the identification and discovery of species in many animal lineages. While the utility of DNA barcoding in molluscs has been demonstrated in other studies, this is the first effort to construct a DNA barcode registry for marine molluscs across such a large geographic area.</p><p>Methodology/Principal Findings</p><p>This study examines patterns of DNA barcode variation in 227 species of Canadian marine molluscs. Intraspecific sequence divergences ranged from 0–26.4% and a barcode gap existed for most taxa. Eleven cases of relatively deep (>2%) intraspecific divergence were detected, suggesting the possible presence of overlooked species. Structural variation was detected in COI with indels found in 37 species, mostly bivalves. Some indels were present in divergent lineages, primarily in the region of the first external loop, suggesting certain areas are hotspots for change. Lastly, mean GC content varied substantially among orders (24.5%–46.5%), and showed a significant positive correlation with nearest neighbour distances.</p><p>Conclusions/Significance</p><p>DNA barcoding is an effective tool for the identification of Canadian marine molluscs and for revealing possible cases of overlooked species. Some species with deep intraspecific divergence showed a biogeographic partition between lineages on the Atlantic, Arctic and Pacific coasts, suggesting the role of Pleistocene glaciations in the subdivision of their populations. Indels were prevalent in the barcode region of the COI gene in bivalves and gastropods. This study highlights the efficacy of DNA barcoding for providing insights into sequence variation across a broad taxonomic group on a large geographic scale.</p></div

    The relationship between COI distance and sampling completeness within genera.

    No full text
    <p>Mean nearest neighbour distance (% K2P) at COI plotted against sampling completeness (%) of each genus of marine mollusc with ≄2 species (N = 50). The ANOVA was insignificant (P = 0.77). Morphospecies lacking a generic identification were excluded from analysis.</p

    The relationship between COI distance and sample size within genera.

    No full text
    <p>Mean nearest neighbour distance (% K2P) at COI plotted against the number of species sampled from each genus of marine mollusc with ≄2 species (N = 50). The regression was insignificant (P = 0.052; R<sup>2</sup> = 0.08). Morphospecies lacking a generic identification were excluded from analysis.</p
    corecore