2,331 research outputs found

    Seismological support for the metastable superplume model, sharp features, and phase changes within the lower mantle

    Get PDF
    Recently, a metastable thermal-chemical convection model was proposed to explain the African Superplume. Its bulk tabular shape remains relatively stable while its interior undergoes significant stirring with low-velocity conduits along its edges and down-welling near the middle. Here, we perform a mapping of chemistry and temperature into P and S velocity variations and replace a seismically derived structure with this hybrid model. Synthetic seismogram sections generated for this 2D model are then compared directly with corresponding seismic observations of P (P, PCP, and PKP) and S (S, SCS, and SKS) phases. These results explain the anticorrelation between the bulk velocity and shear velocity and the sharpness and level of SKS travel time delays. In addition, we present evidence for the existence of a D" triplication (a putative phase change) beneath the down-welling structure

    Automatic identification of gait events using an instrumented sock

    Get PDF
    Background: textile-based transducers are an emerging technology in which piezo-resistive properties of materials are used to measure an applied strain. By incorporating these sensors into a sock, this technology offers the potential to detect critical events during the stance phase of the gait cycle. This could prove useful in several applications, such as functional electrical stimulation (FES) systems to assist gait. Methods: we investigated the output of a knitted resistive strain sensor during walking and sought to determine the degree of similarity between the sensor output and the ankle angle in the sagittal plane. In addition, we investigated whether it would be possible to predict three key gait events, heel strike, heel lift and toe off, with a relatively straight-forward algorithm. This worked by predicting gait events to occur at fixed time offsets from specific peaks in the sensor signal. Results: our results showed that, for all subjects, the sensor output exhibited the same general characteristics as the ankle joint angle. However, there were large between-subjects differences in the degree of similarity between the two curves. Despite this variability, it was possible to accurately predict gait events using a simple algorithm. This algorithm displayed high levels of trial-to-trial repeatability. Conclusions: this study demonstrates the potential of using textile-based transducers in future devices that provide active gait assistance

    Germanene: a novel two-dimensional Germanium allotrope akin to Graphene and Silicene

    Get PDF
    Using a gold (111) surface as a substrate we have grown in situ by molecular beam epitaxy an atom-thin, ordered, two-dimensional multi-phase film. Its growth bears strong similarity with the formation of silicene layers on silver (111) templates. One of the phases, forming large domains, as observed in Scanning Tunneling Microscopy, shows a clear, nearly flat, honeycomb structure. Thanks to thorough synchrotron radiation core-level spectroscopy measurements and advanced Density Functional Theory calculations we can identify it to a 3\sqrt{3}x3\sqrt{3}R(30{\deg}) germanene layer in coincidence with a 7\sqrt{7}x7\sqrt{7}R(19.1{\deg}) Au(111) supercell, thence, presenting the first compelling evidence of the birth of a novel synthetic germanium-based cousin of graphene.Comment: 16 pages, 4 figures, 1 tabl

    Popularizing the Existance of Malang and Batu with Kirana Tour and Travel

    Full text link
    The globalization era and the next decades are a crucial time for the relationship between tour and travel and sustainable development. The need to preserve the world's inherent assets for future generations is becoming an imperative goal not only for tour and travel, but also for all other industries that use the earth's natural resources. The scale of tour and travel's contribution to the global economy and its potential for enabling sustainable development are becoming more real for governments, entrepreneurs, and others who involved in tour and travel industry. Nowadays, Tour and travel's are tourism industries that become one of the largest industries in the world. Economically, it creates jobs and contributes to increase Gross Domestic Product (GDP), as well as brings in capital investment and exports. Socially and culturally, tour and traveloffers the opportunity of providing jobs for minority and disadvantaged groups, creating adequate training in management skills, education and technology to local people and increasing incomes in rural and local economies, thereby contributing to the alleviation of poverty in developing countries. Environmentally, it is essential for tour and travel to maintain an optimal balance of its natural resources to ensure the ongoing arrival of tourists to destinations. In Kirana Tour and Travels, marketing strategy will be based mainly on make sure customers know about the existence of Kirana and the services that Kirana's give. Because the purpose is to make the right information available to the right target customers. This will be done through implementing a market penetration strategy that will make sure that Kirana's tour and travel is well known and respected in the tourism industry. Kirana make sure that the prices take into consideration customers budgets, know that it exists, and how to contact Kirana. The marketing always communicate the sense of quality in every picture, every promotion, and every publication. Kirana's promotional strategy will involve integrating advertising, events, personal selling, public relations, direct marketing and the Internet (specially in media social), details of which are provided in the marketing section of this plan

    Interferometric Observations of the Nuclear Region of Arp220 at Submillimeter Wavelengths

    Get PDF
    We report the first submillimeter interferometric observations of an ultraluminous infrared galaxy. We observed Arp220 in the CO J=3-2 line and 342GHz continuum with the single baseline CSO-JCMT interferometer consisting of the Caltech Submillimeter Observatory (CSO) and the James Clerk Maxwell Telescope (JCMT). Models were fit to the measured visibilities to constrain the structure of the source. The morphologies of the CO J=3-2 line and 342GHz continuum emission are similar to those seen in published maps at 230 and 110GHz. We clearly detect a binary source separated by about 1 arcsec in the east-west direction in the 342GHz continuum. The CO J=3-2 visibility amplitudes, however, indicate a more complicated structure, with evidence for a compact binary at some velocities and rather more extended structure at others. Less than 30% of the total CO J=3-2 emission is detected by the interferometer, which implies the presence of significant quantities of extended gas. We also obtained single-dish CO J=2-1, CO J=3-2 and HCN J=4-3 spectra. The HCN J=4-3 spectrum, unlike the CO spectra, is dominated by a single redshifted peak. The HCN J=4-3/CO J=3-2, HCN J=4-3/HCN J=1-0 and CO J=3-2/2-1 line ratios are larger in the redshifted (eastern) source, which suggests that the two sources may have different physical conditions. This result might be explained by the presence of an intense starburst that has begun to deplete or disperse the densest gas in the western source, while the eastern source harbors undispersed high density gas.Comment: 17 pages, 9 figures, 4 Tables. accepted by Ap

    The Impact of Atmospheric Fluctuations on Degree-scale Imaging of the Cosmic Microwave Background

    Get PDF
    Fluctuations in the brightness of the Earth's atmosphere originating from water vapor are an important source of noise for ground-based instruments attempting to measure anisotropy in the Cosmic Microwave Background. This paper presents a model for the atmospheric fluctuations and derives simple expressions to predict the contribution of the atmosphere to experimental measurements. Data from the South Pole and from the Atacama Desert in Chile, two of the driest places on Earth, are used to assess the level of fluctuations at each site.Comment: 29 pages, 7 figures, 1 table, appears in The Astrophysical Journa

    Disproportionation Phenomena on Free and Strained Sn/Ge(111) and Sn/Si(111) Surfaces

    Full text link
    Distortions of the 3×3\sqrt3\times\sqrt3 Sn/Ge(111) and Sn/Si(111) surfaces are shown to reflect a disproportionation of an integer pseudocharge, QQ, related to the surface band occupancy. A novel understanding of the (3×3)(3\times3)-1U (``1 up, 2 down'') and 2U (``2 up, 1 down'') distortions of Sn/Ge(111) is obtained by a theoretical study of the phase diagram under strain. Positive strain keeps the unstrained value Q=3 but removes distorsions. Negative strain attracts pseudocharge from the valence band causing first a (3×3)(3\times3)-2U distortion (Q=4) on both Sn/Ge and Sn/Si, and eventually a (3×3)(\sqrt3\times\sqrt3)-3U (``all up'') state with Q=6. The possibility of a fluctuating phase in unstrained Sn/Si(111) is discussed.Comment: Revtex, 5 pages, 3 figure

    Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene

    Get PDF
    Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.We have grown an atom-thin, ordered, two-dimensional multi-phase film in situ through germanium molecular beam epitaxy using a gold (111) surface as a substrate. Its growth is similar to the formation of silicene layers on silver (111) templates. One of the phases, forming large domains, as observed in scanning tunneling microscopy, shows a clear, nearly flat, honeycomb structure. Thanks to thorough synchrotron radiation core-level spectroscopy measurements and advanced density functional theory calculations we can identify it as a √3 × √3 R(30°) germanene layer in conjunction with a √7 × √7 R(19.1°) Au(111) supercell, presenting compelling evidence of the synthesis of the germanium-based cousin of graphene on gold.Funding from the 2D-NANOLATTICES project within the 7th Framework Programme for Research of the European Commission, under FET-Open grant number 270749 is greatly appreciated. We acknowledge support from the European Research Council Advanced Grant DYNamo (ERC-2010-AdG-267374), Grupos Consolidados UPV/EHU del Gobierno Vasco (IT-578-13) and European Commission project CRONOS (grant number 280879-2).Peer Reviewe

    Low-frequency ionospheric sounding with Narrow Bipolar Event lightning radio emissions: regular variabilities and solar-X-ray responses

    Get PDF
    We present refinements of a method of ionospheric D-region sounding that makes opportunistic use of powerful (10<sup>9</sup>–10<sup>11</sup> W) broadband lightning radio emissions in the low-frequency (LF; 30–300 kHz) band. Such emissions are from "Narrow Bipolar Event" (NBE) lightning, and they are characterized by a narrow (10-μs), simple emission waveform. These pulses can be used to perform time-delay reflectometry (or "sounding") of the D-region underside, at an effective LF radiated power exceeding by orders-of-magnitude that from man-made sounders. We use this opportunistic sounder to retrieve instantaneous LF ionospheric-reflection height whenever a suitable lightning radio pulse from a located NBE is recorded. We show how to correct for three sources of "regular" variability, namely solar zenith angle, radio-propagation range, and radio-propagation azimuth. The residual median magnitude of the noise in reflection height, after applying the regression corrections for the three regular variabilities, is on the order of 1 km. This noise level allows us to retrieve the D-region-reflector-height variation with solar X-ray flux density for intensity levels at and above an M-1 flare. The instantaneous time response is limited by the occurrence rate of NBEs, and the noise level in the height determination is typically in the range ±1 km
    • …
    corecore