127 research outputs found

    High prevalence of radiographic outliers and revisions with unicompartmental knee arthroplasty

    Get PDF
    BACKGROUND: Alignment outcomes and their impact on implant survival following unicompartmental knee arthroplasty (UKA) are unclear. The purpose of this study was to assess the implant survival and radiographic outcomes after UKA as well as the impact of component alignment and overhang on implant survival. METHODS: We performed a retrospective analysis of 253 primary fixed-bearing and mobile-bearing medial UKAs from a single academic center. All UKAs were performed by 2 high-volume fellowship-trained arthroplasty surgeons. UKAs comprised \u3c10% of their knee arthroplasty practices, with an average of 14.2 medial UKAs per surgeon per year. Implant survival was assessed. Femoral coronal (FCA), femoral sagittal (FSA), tibial coronal (TCA), and tibial sagittal (TSA) angles as well as implant overhang were radiographically measured. Outliers were defined for FCA (\u3e±10° deviation from neutral), FSA (\u3e15° of flexion), TCA (\u3e±5° deviation from neutral), and TSA (\u3e±5° deviation from 7°). Far outliers were an additional \u3e±2° of deviation. Outliers for overhang were identified as \u3e3 mm for anterior overhang, \u3e2 mm for posterior overhang, and \u3e2 mm for medial overhang. RESULTS: Among patients with a failed UKA, revision was performed at an average of 3.7 years (range, 0.03 to 8.7 years). The cumulative revision rate was 14.2%. Kaplan-Meier survival analysis demonstrated 5 and 10-year survival rates of 88.0% (95% confidence interval [CI] = 82.0% to 91.0%) and 70.0% (95% CI = 56.0% to 80.0%), respectively. Only 19.0% (48) of the UKAs met target alignment for all 4 alignment measures, and only 72.7% (184) met all 3 targets for overhang. Only 11.9% (30) fell within all alignment and overhang targets. The risk of implant failure was significantly impacted by outliers for FCA (failure rate = 15.4%, p = 0.036), FSA (16.2%, p = 0.028), TCA (17.9%, p = 0.020), and TSA (15.2%, p = 0.034) compared with implants with no alignment or overhang errors (0%); this was also true for far outliers (p \u3c 0.05). Other risk factors for failure were posterior overhang (failure rate = 25.0%, p = 0.006) and medial overhang (38.2%, p \u3c 0.001); anterior overhang was not a significant risk factor (10.0%, p = 0.090). CONCLUSIONS: The proportions of UKA revisions and alignment outliers were greater than expected, even among high-volume arthroplasty surgeons performing an average of 14.2 UKAs per year (just below the high-volume UKA threshold of 15). Alignment and overhang outliers were significant risk factors for implant failure. LEVEL OF EVIDENCE: Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence

    The impact of surgeon volume and training status on implant alignment in total knee arthroplasty

    Get PDF
    BACKGROUND: Implant malalignment may predispose patients to prosthetic failure following total knee arthroplasty (TKA). A more thorough understanding of the surgeon-specific factors that contribute to implant malalignment following TKA may uncover actionable strategies for improving implant survival. The purpose of this study was to determine the impact of surgeon volume and training status on malalignment. METHODS: In this retrospective multicenter study, we performed a radiographic analysis of 1,570 primary TKAs performed at 4 private academic and state-funded centers in the U.S. and U.K. Surgeons were categorized as high-volume (≥50 TKAs/year) or low-volume (\u3c50 TKAs/year), and as a trainee (fellow/resident under the supervision of an attending surgeon) or a non-trainee (attending surgeon). On the basis of these designations, 3 groups were defined: high-volume non-trainee, low-volume non-trainee, and trainee. The postoperative medial distal femoral angle (DFA), medial proximal tibial angle (PTA), and posterior tibial slope angle (PSA) were radiographically measured. Outlier measurements were defined as follows: DFA, outside of 5° ± 3° of valgus; PTA, \u3e±3° deviation from the neutral axis; and PSA, \u3c0° or \u3e7° of flexion for cruciate-retaining or \u3c0° or \u3e5° of flexion for posterior-stabilized TKAs. Far outliers were defined as measurements falling \u3e± 2° outside of these ranges. The proportions of outliers were compared between the groups using univariate and multivariate analyses. RESULTS: When comparing the high and low-volume non-trainee groups using univariate analysis, the proportions of knees with outlier measurements for the PTA (5.3% versus 17.4%) and PSA (17.4% versus 28.3%) and the proportion of total outliers (11.8% versus 20.7%) were significantly lower in the high-volume group (all p \u3c 0.001). The proportions of DFA (1.9% versus 6.5%), PTA (1.8% versus 5.7%), PSA (5.5% versus 12.6%), and total far outliers (3.1% versus 8.3%) were also significantly lower in the high-volume non-trainee group (all p \u3c 0.001). Compared with the trainee group, the high-volume non-trainee group had significantly lower proportions of DFA (12.6% versus 21.6%), PTA (5.3% versus 12.0%), PSA (17.4% versus 33.3%), and total outliers (11.8% versus 22.3%) (all p \u3c 0.001) as well as DFA (1.9% versus 3.9%; p = 0.027), PSA (5.5% versus 12.6%; p \u3c 0.001), and total far outliers (3.1% versus 6.4%; p = 0.004). No significant differences were identified when comparing the low-volume non-trainee group and the trainee group, with the exception of PTA outliers (17.4% versus 12.0%; p = 0.041) and PTA far outliers (5.7% versus 2.6%; p = 0.033). Findings from multivariate analysis accounting for the effects of patient age, body mass index, and individual surgeon demonstrated similar results. CONCLUSIONS: Low surgical volume and trainee status were risk factors for outlier and far-outlier malalignment in primary TKA, even when accounting for differences in individual surgeon and patient characteristics. Trainee surgeons performed similarly, and certainly not inferiorly, to low-volume non-trainee surgeons. Even among high-volume non-trainees, the best-performing cohort in our study, the proportion of TKA alignment outliers was still high. LEVEL OF EVIDENCE: Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence

    High SOX9 Maintains Glioma Stem Cell Activity through a Regulatory Loop Involving STAT3 and PML

    Get PDF
    Glioma stem cells (GSCs) are critical targets for glioma therapy. SOX9 is a transcription factor with critical roles during neurodevelopment, particularly within neural stem cells. Previous studies showed that high levels of SOX9 are associated with poor glioma patient survival. SOX9 knockdown impairs GSCs proliferation, confirming its potential as a target for glioma therapy. In this study, we characterized the function of SOX9 directly in patient-derived glioma stem cells. Notably, transcriptome analysis of GSCs with SOX9 knockdown revealed STAT3 and PML as downstream targets. Functional studies demonstrated that SOX9, STAT3, and PML form a regulatory loop that is key for GSC activity and self-renewal. Analysis of glioma clinical biopsies confirmed a positive correlation between SOX9/STAT3/PML and poor patient survival among the cases with the highest SOX9 expression levels. Importantly, direct STAT3 or PML inhibitors reduced the expression of SOX9, STAT3, and PML proteins, which significantly reduced GSCs tumorigenicity. In summary, our study reveals a novel role for SOX9 upstream of STAT3, as a GSC pathway regulator, and presents pharmacological inhibitors of the signaling cascade.P.A. and A.S.-A. were recipients of predoctoral fellowships from the AECC foundation and Carlos III Institute (ISCIII), respectively. M.a.-S. holds a Sara Borrell postdoctoral contract from the ISCIII (CD19/00154). E.C.-G. was a recipient of a Stop Fuga de Cerebros postdoctoral fellowship and holds a Miguel Servet contract from the ISCIII (CP19/00085). We thank the Histology Platform of the Biodonostia Health Research Institute, The Neuro-Oncology Committee of Donostia University Hospital, and Basque Biobank for their help. This research was supported by grants from ISCIII and FEDER Funds (CP16/00039, DTS16/00184, PI16/01580, DTS18/00181, PI18/01612, CP19/00085), and the Industry and Health Departments of the Basque Country

    Pathways to care for psychosis in Malawi

    Get PDF
    People with psychosis in Malawi have very limited access to timely assessment and evidence-based care, leading to a long duration of untreated psychosis and persistent disability. Most people with psychosis in the country consult traditional or religious healers. Stigmatising attitudes are common and services have limited capacity, particularly in rural areas. This paper, focusing on pathways to care for psychosis in Malawi, is based on the Wellcome Trust Psychosis Flagship Report on the Landscape of Mental Health Services for Psychosis in Malawi. Its purpose is to inform Psychosis Recovery Orientation in Malawi by Improving Services and Engagement (PROMISE), a longitudinal study that aims to build on existing services to develop sustainable psychosis detection systems and management pathways to promote recovery

    Identification and Characterization of Peripheral T-Cell Lymphoma-Associated SEREX Antigens

    Get PDF
    Peripheral T-cell lymphomas (PTCL) are generally less common and pursue a more aggressive clinical course than B-cell lymphomas, with the T-cell phenotype itself being a poor prognostic factor in adult non-Hodgkin lymphoma (NHL). With notable exceptions such as ALK+ anaplastic large cell lymphoma (ALCL, ALK+), the molecular abnormalities in PTCL remain poorly characterised. We had previously identified circulating antibodies to ALK in patients with ALCL, ALK+. Thus, as a strategy to identify potential antigens associated with the pathogenesis of PTCL, not otherwise specified (PTCL, NOS), we screened a testis cDNA library with sera from four PTCL, NOS patients using the SEREX (serological analysis of recombinant cDNA expression libraries) technique. We identified nine PTCL, NOS-associated antigens whose immunological reactivity was further investigated using sera from 52 B- and T-cell lymphoma patients and 17 normal controls. The centrosomal protein CEP250 was specifically recognised by patients sera and showed increased protein expression in cell lines derived from T-cell versus B-cell malignancies. TCEB3, BECN1, and two previously uncharacterised proteins, c14orf93 and ZBTB44, were preferentially recognised by patients' sera. Transcripts for all nine genes were identified in 39 cancer cell lines and the five genes encoding preferentially lymphoma-recognised antigens were widely expressed in normal tissues and mononuclear cell subsets. In summary, this study identifies novel molecules that are immunologically recognised in vivo by patients with PTCL, NOS. Future studies are needed to determine whether these tumor antigens play a role in the pathogenesis of PTCL

    Impact on Malaria Parasite Multiplication Rates in Infected Volunteers of the Protein-in-Adjuvant Vaccine AMA1-C1/Alhydrogel+CPG 7909

    Get PDF
    BACKGROUND: Inhibition of parasite growth is a major objective of blood-stage malaria vaccines. The in vitro assay of parasite growth inhibitory activity (GIA) is widely used as a surrogate marker for malaria vaccine efficacy in the down-selection of candidate blood-stage vaccines. Here we report the first study to examine the relationship between in vivo Plasmodium falciparum growth rates and in vitro GIA in humans experimentally infected with blood-stage malaria. METHODS: In this phase I/IIa open-label clinical trial five healthy malaria-naive volunteers were immunised with AMA1/C1-Alhydrogel+CPG 7909, and together with three unvaccinated controls were challenged by intravenous inoculation of P. falciparum infected erythrocytes. RESULTS: A significant correlation was observed between parasite multiplication rate in 48 hours (PMR) and both vaccine-induced growth-inhibitory activity (Pearson r = -0.93 [95% CI: -1.0, -0.27] P = 0.02) and AMA1 antibody titres in the vaccine group (Pearson r = -0.93 [95% CI: -0.99, -0.25] P = 0.02). However immunisation failed to reduce overall mean PMR in the vaccine group in comparison to the controls (vaccinee 16 fold [95% CI: 12, 22], control 17 fold [CI: 0, 65] P = 0.70). Therefore no impact on pre-patent period was observed (vaccine group median 8.5 days [range 7.5-9], control group median 9 days [range 7-9]). CONCLUSIONS: Despite the first observation in human experimental malaria infection of a significant association between vaccine-induced in vitro growth inhibitory activity and in vivo parasite multiplication rate, this did not translate into any observable clinically relevant vaccine effect in this small group of volunteers. TRIAL REGISTRATION: ClinicalTrials.gov [NCT00984763]

    Stratification and therapeutic potential of PML in metastatic breast cancer.

    Get PDF
    Patient stratification has been instrumental for the success of targeted therapies in breast cancer. However, the molecular basis of metastatic breast cancer and its therapeutic vulnerabilities remain poorly understood. Here we show that PML is a novel target in aggressive breast cancer. The acquisition of aggressiveness and metastatic features in breast tumours is accompanied by the elevated PML expression and enhanced sensitivity to its inhibition. Interestingly, we find that STAT3 is responsible, at least in part, for the transcriptional upregulation of PML in breast cancer. Moreover, PML targeting hampers breast cancer initiation and metastatic seeding. Mechanistically, this biological activity relies on the regulation of the stem cell gene SOX9 through interaction of PML with its promoter region. Altogether, we identify a novel pathway sustaining breast cancer aggressiveness that can be therapeutically exploited in combination with PML-based stratification.The work of A.C. is supported by the Ramón y Cajal award, the Basque Department of Industry, Tourism and Trade (Etortek), Health (2012111086) and Education (PI2012-03), Marie Curie (277043), Movember Foundation (GAP1), ISCIII (PI10/01484, PI13/00031), FERO (VIII Fellowship) and ERC (336343). N.M.-M. and P.A. are supported by the Spanish Association Against Cancer (AECC), AECC JP Vizcaya and Guipuzcoa, respectively. J.U. and F.S. are Juan de la Cierva Researchers (MINECO). L.A., A.A.-A. and L.V.-J. are supported by the Basque Government of education. M.L.-M.C. acknowledges SAF2014-54658-R and Asociación Española contra el Cancer. R.B. acknowledges Spanish MINECO (BFU2014-52282-P, Consolider BFU2014-57703-REDC), the Departments of Education and Industry of the Basque Government (PI2012/42) and the Bizkaia County. M.S., V.S. and J.B. acknowledge Banco Bilbao Vizcaya Argentaria (BBVA) Foundation (Tumour Biomarker Research Program). M.S. and J.B. are supported by NIH grant P30 CA008748. M.dM.V. is supported by the Institute of Health Carlos III (PI11/02251, PI14/01328) and Basque Government, Health Department (2014111145). A.M. is supported by ISCIII (CP10/00539, PI13/02277) and Marie Curie CIG 2012/712404. V.S. is supported by the SCIII (PI13/01714, CP14/00228), the FERO Foundation and the Catalan Agency AGAUR (2014 SGR 1331). R.R.G. research support is provided by the Spanish Ministry of Science and Innovation grant SAF2013-46196, BBVA Foundation, the Generalitat de Catalunya (2014 SGR 535), Institució Catalana de Recerca i Estudis Avançats, the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds (SAF2013-46196).This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms1259
    corecore