39 research outputs found

    A model for the X-ray absorption in Compton--thin AGN

    Full text link
    The fraction of AGN with photoelectric absorption in the X-rays ranging from NH of 10^{22} up to about 10^{24} cm^{-2} (Compton-thin) appears observationally to be anticorrelated to their luminosity Lx. This recently found evidence is used to investigate the location of the absorbing gas. The molecular torus invoked in the unified picture of AGN, while it can be regarded as confirmed on several grounds to explain the Compton-thick objects, do not conform to this new constraint, at least in its physical models as developed so far. In the frame of observationally based evidence that in Compton-thin sources the absorbing gas might be located far away from the X-ray source, it is shown that the gravitational effects of the black hole (BH) on the molecular gas in a disk, within 25-450 pc (depending on the BH mass, from 10^6 to 10^9 M_solar, leads naturally to the observed anticorrelation, under the assumption of a statistical correlation between the BH mass and Lx. Its normalization is also reproduced provided that the surface density, Sigma, of this gas is larger than about 150-200 M_solar pc^{-2}, and assuming that the bolometric luminosity is one tenth of the Eddington limit. Interestingly, the required values are consistent with the value of the 300 pc molecular disk in our own galaxy, namely 500 M_solar pc^{-2}. In a sample of nearby galaxies from the BIMA SONG survey, it is found that half of the objects have central Sigma larger than 150 M_solar pc${-2}. Given the simplicity of the proposed model, this finding is very encouraging, waiting for future higher resolution surveys in CO on more distant galaxies.Comment: Astronomy and Astrophysics, in pres

    Thyroid Hormone Signalling Genes Are Regulated by Photoperiod in the Hypothalamus of F344 Rats

    Get PDF
    Seasonal animals adapt their physiology and behaviour in anticipation of climate change to optimise survival of their offspring. Intra-hypothalamic thyroid hormone signalling plays an important role in seasonal responses in mammals and birds. In the F344 rat, photoperiod stimulates profound changes in food intake, body weight and reproductive status. Previous investigations of the F344 rat have suggested a role for thyroid hormone metabolism, but have only considered Dio2 expression, which was elevated in long day photoperiods. Microarray analysis was used to identify time-dependent changes in photoperiod responsive genes, which may underlie the photoperiod-dependent phenotypes of the juvenile F344 rat. The most significant changes are those related to thyroid hormone metabolism and transport. Using photoperiod manipulations and melatonin injections into long day photoperiod (LD) rats to mimic short day (SD), we show photoinduction and photosuppression gene expression profiles and melatonin responsiveness of genes by in situ hybridization; TSHβ, CGA, Dio2 and Oatp1c1 genes were all elevated in LD whilst in SD, Dio3 and MCT-8 mRNA were increased. NPY was elevated in SD whilst GALP increased in LD. The photoinduction and photosuppression profiles for GALP were compared to that of GHRH with GALP expression following GHRH temporally. We also reveal gene sets involved in photoperiodic responses, including retinoic acid and Wnt/ß-catenin signalling. This study extends our knowledge of hypothalamic regulation by photoperiod, by revealing large temporal changes in expression of thyroid hormone signalling genes following photoperiod switch. Surprisingly, large changes in hypothalamic thyroid hormone levels or TRH expression were not detected. Expression of NPY and GALP, two genes known to regulate GHRH, were also changed by photoperiod. Whether these genes could provide links between thyroid hormone signalling and the regulation of the growth axis remains to be investigated

    Neutral Hydrogen (21 Centimeter) Absorption in Seyfert Galaxies: Evidence for Free-Free Absorption and Subkiloparsec Gaseous Disks

    Get PDF
    Original article can be found at: http://www.journals.uchicago.edu/ApJ/front.html--Copyright American Astronomical SocietyActive galaxies are thought to be both fueled and obscured by neutral gas removed from the host galaxy and funneled into a central accretion disk. We performed a VLA imaging survey of 21 cm absorption in Seyfert and starburst nuclei to study the neutral gas in the near-nuclear environment. With the exception of NGC 4151, the absorbing gas traces 100 pcÈscale, rotating disks aligned with the outer galaxy disk. These disks appear to be rich in atomic gas relative to nuclear disks in nonactive spirals. We Ðnd no strong evidence for rapid infall or outÑow of neutral hydrogen, but our limits on the mass infall rates are compatible with that required to feed a Seyfert nucleus. Among the galaxies surveyed here, neutral hydrogen absorption traces parsec-scale gas only in NGC 4151. Based on the kinematics of the absorption line, the disk symmetry axis appears to align with the radio jet axis rather than the outer galaxy axis. The most surprising result is that we detect no 21 cm absorption toward the central radio sources of the hidden Seyfert 1 nuclei Mrk 3, Mrk 348, and NGC 1068. Moreover, 21 cm absorption is commonly observed toward extended radio jet structure but appears to avoid central, compact radio sources in Seyfert nuclei. To explain these results, we propose that 21 cm absorption toward the nucleus is suppressed by either free-free absorption, excitation e ects (i.e., enhanced spin temperature), or rapid motion in the obscuring gas. Ironically, the implications of these e ects is that the obscuring disks must be small, typically not larger than a few tens of parsecs.Peer reviewe
    corecore