5,279 research outputs found
Variable Fall Climate Conditions on Carbon Assimilation and Spring Phenology of Young Peach Trees
Variable fall temperature and moisture conditions may alter leaf senescence of deciduous fruit trees, influencing carbon assimilation before dormancy and phenology the following spring. This study explored gas exchange of young peach trees (Prunus persica (L.) Batsch) when senescence proceeded normally or was delayed during the fall under two soil moisture treatments: Well-irrigated trees or water deficit. Results showed leaf carbon assimilation was similar between the senescence treatments, but whole tree assimilation was estimated to be greater in delayed senescence trees compared to normal senescence trees based on timing of defoliation and total leaf area. The effect of soil moisture on carbon assimilation was not consistent between years. Delayed sap flow and bloom time resulted as a consequence of delayed senescence the previous fall, but soil moisture did not affect spring phenology
Equipe Editorial
Esta é a Equipe Editorial da Revista Philia&Filia, Vol. 03, no. 01 (jan./jul. 2012), Literatura e Cultura dos Séculos XVI ao XVIII
Identification of rho as a substrate for botulinum toxin C3-catalyzed ADP-ribosylation
AbstractRecombinant Aplysia rho and a GTP-binding protein purified from human neutrophil membranes (G22K) were ADP-ribosylated by botulinum toxin C3 with stoichiometries of 0.8 and 0.6, respectively. Rho and G22K appeared to be different proteins since (i) rho migrated faster on polyacrylamide gels, (ii) unlike G22K, rho did not require the presence of cytosol to be ADP-ribosylated, (iii) G22K was not recognized by an anti-rho antiserum, and (iv) antibody 142-24E05 recognized G22K effectively but only poorly cross reacted with rho. ADP-ribosylation had no effect on the ability of rho to bind or hydrolyse GTP. Therefore, it appears that there are multiple botulinum toxin C3 substrates and that the toxin exerts its effects on cell function by a mechanism other than modulating the GTPase activity of rho
Identification of novel amplification gene targets in mouse and human breast cancer at a syntenic cluster mapping to mouse identification of novel amplification gene targets in mouse and human breast cancer at a syntenic cluster mapping to mouse ch8a1 and human ch13q34
Serial analysis of gene expression from aggressive mammary tumors derived from transplantable p53 null mouse mammary outgrowth lines revealed significant up-regulation of Tfdp1 (transcription factor Dp1), Lamp1 (lysosomal membrane glycoprotein 1) and Gas6 (growth arrest specific 6) transcripts. All of these genes belong to the same linkage cluster, mapping to mouse chromosome band 8A1. BAC-array comparative genomic hybridization and fluorescence in situ hybridization analyses revealed genomic amplification at mouse region ch8A1.1. The minimal region of amplification contained genes Cul4a, Lamp1, Tfdp1, and Gas6, highly overexpressed in the p53 null mammary outgrowth lines at preneoplastic stages, and in all its derived tumors. The same amplification was also observed in spontaneous p53 null mammary tumors. Interestingly, this region is homologous to human chromosome 13q34, and some of the same genes were previously observed amplified in human carcinomas. Thus, we further investigated the occurrence and frequency of gene amplification affecting genes mapping to ch13q34 in human breast cancer. TFDP1 showed the highest frequency of amplification affecting 31% of 74 breast carcinomas analyzed. Statistically significant positive correlation was observed for the amplification of CUL4A, LAMP1, TFDP1, and GAS6 genes (P < 0.001). Meta-analysis of publicly available gene expression data sets showed a strong association between the high expression of TFDP1 and decreased overall survival (P = 0.00004), relapse-free survival (P = 0.0119), and metastasis-free interval (P = 0.0064). In conclusion, our findings suggest that CUL4A, LAMP1, TFDP1, and GAS6 are targets for overexpression and amplification in breast cancers. Therefore, overexpression of these genes and, in particular, TFDP1 might be of relevance in the development and/or progression in a significant subset of human breastFil: Abba, Martín Carlos. University of Texas; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fabris, Victoria Teresa. University of Texas; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Hu, Yuhui. University of Texas; Estados UnidosFil: Kittrell, Frances S.. Baylor College of Medicine; Estados Unidos. University of Texas; Estados UnidosFil: Cai, Wei Wen. University of Texas; Estados Unidos. Baylor College of Medicine; Estados UnidosFil: Donehower, Lawrence A.. University of Texas; Estados UnidosFil: Sahin, Aysegui. University of Texas; Estados UnidosFil: Medina, Daniel. University of Texas; Estados Unidos. Baylor College of Medicine; Estados UnidosFil: Aldaz, Claudio Marcelo. University of Texas; Estados Unido
Rotorcraft Flight Dynamics and Controls Research at NASA
In recent years, NASA has invested in key activities in the areas of flight controls, handling qualities and operations of rotorcraft for civilian applications. More specifically, the flight dynamics and control discipline has focused on analyzing the unique flight control and handling qualities challenges of large rotary wing vehicles anticipated for future passenger service, and examining the effect of control system augmentation on handling qualities for current civilian helicopters in order to improve safety and reduce accident rates. This paper highlights two recent research efforts in these areas. The first is an examination of flight control and handling qualities aspects of large rotorcraft. A series of experiments were performed in the large-motion Vertical Motion Simulator at NASA Ames Research Center to quantify the effects of vehicle size on flight control requirements and piloted handling qualities. These experiments used a large tilt-rotor concept (~100 passengers) to also investigate the control augmentation required to obtain Level 1 handling qualities for a vehicle of this size. The second is an examination of the effect of control system augmentation on handling qualities for current civil rotorcraft, like those currently used for Emergency Medical Service type operations. Many current civilian helicopters have rate response type control systems and little or no control system augmentation, although current technologies allow helicopters to be fitted with stability augmentation systems, either as standard equipment or aftermarket options. A simulation experiment was conducted in the Vertical Motion Simulator to quantify the effects of advanced control modes available with a partial authority stability augmentation system on task performance and handling qualities in both good and degraded visual conditions. In addition to providing an overview of the rotary wing flight dynamics and controls research at NASA, this paper will provide an overview of these two research activities along with key results and conclusions
Rotorcraft Flight Dynamics and Controls Research at NASA
In recent years, NASA has invested in key activities in the areas of flight controls, handling qualities and operations of rotorcraft for civilian applications. More specifically, the flight dynamics and control discipline has focused on analyzing the unique flight control and handling qualities challenges of large rotary wing vehicles anticipated for future passenger service, and examining the effect of control system augmentation on handling qualities for current civilian helicopters in order to improve safety and reduce accident rates. This paper highlights two recent research efforts in these areas. The first is an examination of flight control and handling qualities aspects of large rotorcraft. A series of experiments were performed in the large-motion Vertical Motion Simulator at NASA Ames Research Center to quantify the effects of vehicle size on flight control requirements and piloted handling qualities. These experiments used a large tilt-rotor concept (~100 passengers) to also investigate the control augmentation required to obtain Level 1 handling qualities for a vehicle of this size. The second is an examination of the effect of control system augmentation on handling qualities for current civil rotorcraft, like those currently used for Emergency Medical Service type operations. Many current civilian helicopters have rate response type control systems and little or no control system augmentation, although current technologies allow helicopters to be fitted with stability augmentation systems, either as standard equipment or aftermarket options. A simulation experiment was conducted in the Vertical Motion Simulator to quantify the effects of advanced control modes available with a partial authority stability augmentation system on task performance and handling qualities in both good and degraded visual conditions. In addition to providing an overview of the rotary wing flight dynamics and controls research at NASA, this paper will provide an overview of these two research activities along with key results and conclusions
Abrupt climate changes during Termination III in Southern Europe
The Late Quaternary glacial-interglacial transitions represent the highest amplitude climate changes over the last million years. Unraveling the sequence of events and feedbacks at Termination III (T-III), including potential abrupt climate reversals similar to those of the last Termination, has been particularly challenging due to the scarcity of well-dated records worldwide. Here, we present speleothem data from southern Europe covering the interval from 262.7 to 217.9 kyBP, including the transition from marine isotope stage (MIS) 8 to MIS 7e. High-resolution delta C-13, delta O-18, and Mg/Ca profiles reveal major millennial-scale changes in aridity manifested in changing water availability and vegetation productivity. uranium-thorium dates provide a solid chronology for two millennial-scale events (S8.1 and S8.2) which, compared with the last two terminations, has some common features with Heinrich 1 and Heinrich 2 in Termination I (T-I)
Differential Gene Expression Patterns in Peach Roots under Non-Uniform Soil Conditions in Response to Organic Matter
Organic matter (OM) amendments are often encouraged in sustainable agriculture programs
but can create heterogeneous soil environments when applied to perennial crops such as peaches
(Prunus persica (L.) Batsch). To better understand the responses of peach roots to non-uniform soil
conditions, transcriptomic analysis was performed in a split-root study using uniform soil (the same
soil type for all roots) or non-uniform soil (different soil types for each half of the root system) from
either (1) autoclaved sand (S), (2) autoclaved sand with autoclaved compost (A), or (3) autoclaved
sand with compost which included inherent biological soil life (B). Each uniform soil type (S, A, and
B) was grouped and compared by uniform and non-uniform soil comparisons for a total of nine
treatments. Comparisons revealed peach roots had differentially expressed genes (DEGs) and gene
ontology terms between soil groups, with the S and B groups having a range of 106–411 DEGs and
the A group having a range of 19–94 DEGs. Additionally, six modules were identified and correlated
(p > 0.69) for six of the nine treatment combinations. This study broadly highlights the complexity of
how OM and biological life in the rhizosphere interact with immediate and distant roots and sheds
light on how non-homogenous soil conditions can influence peach root gene expression.This research was funded by the Strategic University Challenge for Competitive Excellence and Expertise in Discovery and Scholarship grant (2022 Clemson Faculty SUCCEEDS) and by the Open Access Publishing Fund provided by Clemson University Libraries.info:eu-repo/semantics/publishedVersio
Handling Qualities of Large Rotorcraft in Hover and Low Speed
According to a number of system studies, large capacity advanced rotorcraft with a capability of high cruise speeds (approx.350 mph) as well as vertical and/or short take-off and landing (V/STOL) flight could alleviate anticipated air transportation capacity issues by making use of non-primary runways, taxiways, and aprons. These advanced aircraft pose a number of design challenges, as well as unknown issues in the flight control and handling qualities domains. A series of piloted simulation experiments have been conducted on the NASA Ames Research Center Vertical Motion Simulator (VMS) in recent years to systematically investigate the fundamental flight control and handling qualities issues associated with the characteristics of large rotorcraft, including tiltrotors, in hover and low-speed maneuvering
- …