11 research outputs found

    Audit of Referral Pattern of Cancer Cases to the Radiotherapy and Oncology Unit of a Tertiary Hospital in Nigeria

    Get PDF
    Objectives: This study assessed the types of cancer cases referred to Radiotherapy and oncology unit of Ahmadu Bello University Teaching Hospital (ABUTH) Zaria, and determine the age, sex, and geopolitical zones distributions of cancer cases in ABUTH, Zaria.Methods: A retrospective study was conducted reviewing all cancer cases referred to the centre, for a period of 10 years (2004 – 2013). Ethical approval was obtained from the ethical committee of the hospital. Data capture sheet was used to collect information from the patient’s folder and this was analysed using statistical package for social sciences version 20.0Results: Three thousand nine hundred and thirty four (3934) patient’s records were reviewed. Patient’s age ranged from 0 -110 years, with a mean age of 42.4 years. Patients within the age range of 31 to 60 years had the highest cancer incidence. A total of 37 types of cancer were diagnosed with cervical cancer having the highest incidence of 1083 (27.5%). This was followed by head and neck 821 (20.9%). Intestinal cancer had the least incidence of 1 (0.02%). Female cancer cases predominated with a female to male ratio of 1.8:1. North-western Nigeria had the highest cancer incidence of 1656 (42.1%). Conclusion: This study found high incidence of cancer cases among adults age ranged 31 to 60 years with female to male ratio of 1.8:1. Cervical cancer had the highest incidence among the 37 cancer spectrum treated at the centre. The North-western Nigeria had the highest incidence of cancer cases

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Animal Bone Ash Catalyzed Upgrading of Mango Seed Oil into Biodiesel through Heterogeneous Transesterification

    No full text
    Biodiesel production via catalytic transesterification of non-edible oils derived from plants is one of the priority areas considered by researchers as an approach to reduce the over-dependence on fossil fuels. However, the development of most appropriate catalyst system is still under investigation. The current study therefore investigated the potentials of bone ashes derived from cow, camel and goat as catalytic materials for upgrading mango seed oils into biodiesel under a range of reaction conditions. Irrespective of the bone ash type, the XRF data revealed the presence of CaO, P2O5, SiO2, Al2O3, K2O, Na2O, MgO, TiO2 and Fe2O3. Among the nine oxides, CaO and P2O5 were found to play a competitive role during the upgrading reaction. However, reactions influenced by active basic sites in CaO were very favourable and accounted for the production of high biodiesel yields reaching maximum at ~94.5%. Further studies on properties characterization showed the produced methyl esters to have properties in line with those approved internationally for the designing of B100 and other grades of biodiesel

    DFT studies of structural, electronic and optical properties of (5, 5) armchair magnesium oxide nanotubes (MgONTs)

    No full text
    Due to high demand for smart materials for use in optoelectronic systems, many experimental studies were carried out on nano systems of magnesium oxide (MgO) such as magnesium nano-wires, magnesium oxide nanoparticles. However, there were reported lack of investigating the electronic and optical response of the nanotube form of MgO across chirality geometry and anisotropic directions. Furthermore experimental studies revealed the properties without taking account in to the chiral effects. Studies of the optoelectronic properties of magnesium oxide nanotubes were not done either experimentally or theoretically. In order to bridge this gap, this work starts with investigating the structural electronic and optical properties of armchair single walled magnesium oxide nanotubes (SWMgONT) on one of the armchair chirality. Calculations were scoped on (5, 5) armchair MgONT with varying inner diameter of 4.2 and 4.5 Å respectively. Although the nanotube is stable in both diameter configurations, MgONT with diameter of 4.5 Å was found be more stable. Studies of the electronic band structure of the 0.62 eV for (5, 5) SWMgONT which is consistent with the experimental values reported. Results from the imaginary dielectric revealed that it becomes transparent above 17.5 eV, Peaks in the energy loss curve are related to intra-band excitations, such that large peaks are associated with Plasmon energy. Based on the values of the first bound excitons (electron-hole) obtained, it can be concluded that (5, 5) SWMgONT is a promising candidate for solar cells and near infrared opto-electronic applications such as biomedical imaging, gas sensing and optical communication

    The Exchange-Correlation Effects on the Electronic Bands of Hybrid Armchair Single-Walled Carbon Boron Nitride Nanostructure

    No full text
    This study investigates the effect of exchange-correlation on the electronic properties of hybridized hetero-structured nanomaterials, called single-walled carbon boron nitride nanotubes (SWCBNNT). A first principles (ab initio) method implemented in Quantum ESPRESSO codes, together with different parametrizations (local density approximation (LDA) formulated by Perdew Zunga (PZ) and the generalized gradient approximation (GGA) proposed by Perdew–Burke–Ernzerhof (PBE) and Perdew–Wang 91 (PW91)), were used in this study. It has been observed that the disappearance of interface states in the band gap was due to the discontinuity of the π–π bonds in some segments of SWCNT, which resulted in the asymmetric distribution in the two segments. This work has successfully created a band gap in SWCBNNT, where the PBE exchange-correlation functional provides a well-agreed band gap value of 1.8713 eV. Effects of orbitals on electronic properties have also been studied elaborately. It has been identified that the Py orbital gives the largest contribution to the electrical properties of our new hybrid SWCBNNT nanostructures. This study may open a new avenue for tailoring bandgap in the hybrid heterostructured nanomaterials towards practical applications with next-generation optoelectronic devices, especially in LED nanoscience and nanotechnology

    The Exchange-Correlation Effects on the Electronic Bands of Hybrid Armchair Single-Walled Carbon Boron Nitride Nanostructure

    No full text
    This study investigates the effect of exchange-correlation on the electronic properties of hybridized hetero-structured nanomaterials, called single-walled carbon boron nitride nanotubes (SWCBNNT). A first principles (ab initio) method implemented in Quantum ESPRESSO codes, together with different parametrizations (local density approximation (LDA) formulated by Perdew Zunga (PZ) and the generalized gradient approximation (GGA) proposed by Perdew–Burke–Ernzerhof (PBE) and Perdew–Wang 91 (PW91)), were used in this study. It has been observed that the disappearance of interface states in the band gap was due to the discontinuity of the π–π bonds in some segments of SWCNT, which resulted in the asymmetric distribution in the two segments. This work has successfully created a band gap in SWCBNNT, where the PBE exchange-correlation functional provides a well-agreed band gap value of 1.8713 eV. Effects of orbitals on electronic properties have also been studied elaborately. It has been identified that the Py orbital gives the largest contribution to the electrical properties of our new hybrid SWCBNNT nanostructures. This study may open a new avenue for tailoring bandgap in the hybrid heterostructured nanomaterials towards practical applications with next-generation optoelectronic devices, especially in LED nanoscience and nanotechnology

    Computational Studies of the Excitonic and Optical Properties of Armchair SWCNT and SWBNNT for Optoelectronics Applications

    No full text
    In this study, the optical refractive constants of the (5, 5) SWBNNT and (5, 5) SWCNT systems were calculated in both parallel and perpendicular directions of the tube axis by using Quantum ESPRESSO and YAMBO code. It also extended the optical behaviors of (5, 5) SWCNT and (5, 5) SWBNNT to both perpendicular and parallel directions instead of the parallel directions reported in the literature. It also looked at the effects of the diameter of the nanotube on the optical properties instead of chiral angles. From our results, the best optical reflection was found for (5, 5) SWBNNT, while the best optical refraction was found with (5, 5) SWCNT. It was observed that the SWCNT demonstrates refraction in both parallel and perpendicular directions, while (5, 5) SWBNNT shows perfect absorption in perpendicular direction. These new features that appeared for both nanotubes in perpendicular directions were due to new optical band gaps, which appear in the perpendicular directions to both nanotubes’ axis. The electron energy loss (EEL) spectrum of SWBNNT revealed the prominent π- and π + ÎŽ- Plasmon peaks, which demonstrates themselves in the reflectivity spectrum. Furthermore, little effect of diameter was observed for the perpendicular direction to both nanotubes’ axis; as such, the combined properties of (5, 5) SWBNNT and (5, 5) SWCNT materials/systems for transmitting light offer great potential for applications in mobile phone touch screens and mobile network antennas. In addition, the studies of optical properties in the perpendicular axis will help bring ultra-small nanotubes such as SWCNT and SWBNNT to the applications of next-generation nanotechnology

    Studies of H2 storage efficiency of metal-doped carbon nanotubes by optical adsorption spectra analysis

    No full text
    Due to the recent demands to replace fossil fuels with hydrogen, researchers are making many attempts to develop new materials to store hydrogen energy. Hydrogen is considered a potential candidate to replace fossil fuels due to its non-toxic, massless, and more efficient properties. This research has investigated the enhancement of the hydrogen storage capabilities of armchair single-walled carbon nanotubes (SWCNTs) through the separate doping of transition metals such as osmium (Os) and iron (Fe). The studies were performed with quantum simulation codes implemented in Quantum ESPRESSO and thermo_pw based on density functional theory (DFT), plane waves and pseudopotentials. The obtained results show that Os-doped SWCNTs are more suitable for H2 storage than Fe-doped SWCNTs due to the almost equal energy loss with and without H2 adsorption. Furthermore, lower adsorption in perpendicular directions indicated that the adsorbed H2 molecules aligned parallel to the nanotube axes. This further confirmed that the SWCNT nanotube system had a higher aspect ratio in parallel directions. Overall, it has been observed that transition metal doping increases the efficiency of the hydrogen storage potential of armchair SWCNTs compared to other doped metals. In general, the co-doping of SWCNT with osmium and nitrogen atoms increases the adsorption capability of H2 molecules

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population
    corecore