701 research outputs found
Small-scale health-related indicator acquisition using secondary data spatial interpolation
<p>Abstract</p> <p>Background</p> <p>Due to the lack of small-scale neighbourhood-level health related indicators, the analysis of social and spatial determinants of health often encounter difficulties in assessing the interrelations of neighbourhood and health. Although secondary data sources are now becoming increasingly available, they usually cannot be directly utilized for analysis in other than the designed study due to sampling issues. This paper aims to develop data handling and spatial interpolation procedures to obtain small area level variables using the Canadian Community Health Surveys (CCHS) data so that meaningful small-scale neighbourhood level health-related indicators can be obtained for community health research and health geographical analysis.</p> <p>Results</p> <p>Through the analysis of spatial autocorrelation, cross validation comparison, and modeled effect comparison with census data, kriging is identified as the most appropriate spatial interpolation method for obtaining predicted values of CCHS variables at unknown locations. Based on the spatial structures of CCHS data, kriging parameters are suggested and potential small-area-level health-related indicators are derived. An empirical study is conducted to demonstrate the effective use of derived neighbourhood variables in spatial statistical modeling. Suggestions are also given on the accuracy, reliability and usage of the obtained small area level indicators, as well as further improvements of the interpolation procedures.</p> <p>Conclusions</p> <p>CCHS variables are moderately spatially autocorrelated, making kriging a valid method for predicting values at unsampled locations. The derived variables are reliable but somewhat smoother, with smaller variations than the real values. As potential neighbourhood exposures in spatial statistical modeling, these variables are more suitable to be used for exploring potential associations than for testing the significance of these associations, especially for associations that are barely significant. Given the spatial dependency of current health-related risks, the developed procedures are expected to be useful for other similar health surveys to obtain small area level indicators.</p
Brain Segmentation From Computed Tomography of Healthy Aging and Geriatric Concussion at Variable Spatial Resolutions
When properly implemented and processed, anatomic T1-weighted magnetic resonance imaging (MRI) can be ideal for the noninvasive quantification of white matter (WM) and gray matter (GM) in the living human brain. Although MRI is more suitable for distinguishing GM from WM than computed tomography (CT), the growing clinical use of the latter technique has renewed interest in head CT segmentation. Such interest is particularly strong in settings where MRI is unavailable, logistically unfeasible or prohibitively expensive. Nevertheless, whereas MRI segmentation is a sophisticated and technically-mature research field, the task of automatically classifying soft brain tissues from CT remains largely unexplored. Furthermore, brain segmentation methods for MRI hold considerable potential for adaptation and application to CT image processing. Here we demonstrate this by combining probabilistic, atlas-based classification with topologically-constrained tissue boundary refinement to delineate WM, GM and cerebrospinal fluid (CSF) from head CT images. The feasibility and utility of this approach are revealed by comparison of MRI-only vs. CT-only segmentations in geriatric concussion victims with both MRI and CT scans. Comparison of the two segmentations yields mean Sørensen-Dice coefficients of 85.5 ± 4.6% (WM), 86.7 ± 5.6% (GM) and 91.3 ± 2.8% (CSF), as well as average Hausdorff distances of 3.76 ± 1.85 mm (WM), 3.43 ± 1.53 mm (GM) and 2.46 ± 1.27 mm (CSF). Bootstrapping results suggest that the segmentation approach is sensitive enough to yield WM, GM and CSF volume estimates within ~5%, ~4%, and ~3% of their MRI-based estimates, respectively. To our knowledge, this is the first 3D segmentation approach for CT to undergo rigorous within-subject comparison with high-resolution MRI. Results suggest that (1) standard-quality CT allows WM/GM/CSF segmentation with reasonable accuracy, and that (2) the task of soft brain tissue classification from CT merits further attention from neuroimaging researchers
Optimal Acquisition and Modeling Parameters for Accurate Assessment of Low K_(trans) Blood–Brain Barrier Permeability Using Dynamic Contrast-Enhanced MRI
Purpose:
To determine optimal parameters for acquisition and processing of dynamic contrast-enhanced MRI (DCE-MRI) to detect small changes in near normal low blood–brain barrier (BBB) permeability.
Methods:
Using a contrast-to-noise ratio metric (K-CNR) for K_(trans) precision and accuracy, the effects of kinetic model selection, scan duration, temporal resolution, signal drift, and length of baseline on the estimation of low permeability values was evaluated with simulations.
Results:
The Patlak model was shown to give the highest K-CNR at low K_(trans). The K_(trans) transition point, above which other models yielded superior results, was highly dependent on scan duration and tissue extravascular extracellular volume fraction (v_e). The highest K-CNR for low K_(trans) was obtained when Patlak model analysis was combined with long scan times (10–30 min), modest temporal resolution (<60 s/image), and long baseline scans (1–4 min). Signal drift as low as 3% was shown to affect the accuracy of K_(trans) estimation with Patlak analysis.
Conclusion:
DCE acquisition and modeling parameters are interdependent and should be optimized together for the tissue being imaged. Appropriately optimized protocols can detect even the subtlest changes in BBB integrity and may be used to probe the earliest changes in neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis
Blood-Brain Barrier Breakdown in the Aging Human Hippocampus
The blood-brain barrier (BBB) limits entry of blood-derived products, pathogens, and cells into the brain that is essential for normal neuronal functioning and information processing. Post-mortem tissue analysis indicates BBB damage in Alzheimer’s disease (AD). The timing of BBB breakdown remains, however, elusive. Using an advanced dynamic contrast-enhanced MRI protocol with high spatial and temporal resolutions to quantify regional BBB permeability in the living human brain, we show an age-dependent BBB breakdown in the hippocampus, a region critical for learning and memory that is affected early in AD. The BBB breakdown in the hippocampus and its CA1 and dentate gyrus subdivisions worsened with mild cognitive impairment that correlated with injury to BBB-associated pericytes, as shown by the cerebrospinal fluid analysis. Our data suggest that BBB breakdown is an early event in the aging human brain that begins in the hippocampus and may contribute to cognitive impairment
TransCom model simulations of CH₄ and related species: linking transport, surface flux and chemical loss with CH₄ variability in the troposphere and lower stratosphere
A chemistry-transport model (CTM) intercomparison experiment (TransCom-CH₄) has been designed to investigate the roles of surface emissions, transport and chemical loss in simulating the global methane distribution. Model simulations were conducted using twelve models and four model variants and results were archived for the period of 1990–2007. All but one model transports were driven by reanalysis products from 3 different meteorological agencies. The transport and removal of CH₄ in six different emission scenarios were simulated, with net global emissions of 513 ± 9 and 514 ± 14 Tg CH₄ yr[superscript −1] for the 1990s and 2000s, respectively. Additionally, sulfur hexafluoride (SF₆) was simulated to check the interhemispheric transport, radon ([supercript 222]Rn) to check the subgrid scale transport, and methyl chloroform (CH₃CCl₃) to check the chemical removal by the tropospheric hydroxyl radical (OH). The results are compared to monthly or annual mean time series of CH₄, SF₆ and CH₃CCl₃ measurements from 8 selected background sites, and to satellite observations of CH₄ in the upper troposphere and stratosphere. Most models adequately capture the vertical gradients in the stratosphere, the average long-term trends, seasonal cycles, interannual variations (IAVs) and interhemispheric (IH) gradients at the surface sites for SF₆, CH₃CCl₃ and CH₄. The vertical gradients of all tracers between the surface and the upper troposphere are consistent within the models, revealing vertical transport differences between models. An average IH exchange time of 1.39 ± 0.18 yr is derived from SF₆ time series. Sensitivity simulations suggest that the estimated trends in exchange time, over the period of 1996–2007, are caused by a change of SF₆ emissions towards the tropics. Using six sets of emission scenarios, we show that the decadal average CH₄ growth rate likely reached equilibrium in the early 2000s due to the flattening of anthropogenic emission growth since the late 1990s. Up to 60% of the IAVs in the observed CH₄ concentrations can be explained by accounting for the IAVs in emissions, from biomass burning and wetlands, as well as meteorology in the forward models. The modeled CH₄ budget is shown to depend strongly on the troposphere-stratosphere exchange rate and thus on the model's vertical grid structure and circulation in the lower stratosphere. The 15-model median CH₄ and CH₃CCl₃ atmospheric lifetimes are estimated to be 9.99 ± 0.08 and 4.61 ± 0.13 yr, respectively, with little IAV due to transport and temperature.United States. National Aeronautics and Space Administration (NASA-AGAGE Grant NNX11AF17G
Off-line algorithm for calculation of vertical tracer transport in the troposphere due to deep convection
A modified cumulus convection parametrisation scheme is presented. This scheme computes the mass of air transported upward in a cumulus cell using conservation of moisture and a detailed distribution of convective precipitation provided by a reanalysis dataset. The representation of vertical transport within the scheme includes entrainment and detrainment processes in convective updrafts and downdrafts. Output from the proposed parametrisation scheme is employed in the National Institute for Environmental Studies (NIES) global chemical transport model driven by JRA-25/JCDAS reanalysis. The simulated convective precipitation rate and mass fluxes are compared with observations and reanalysis data. A simulation of the short-lived tracer [superscript 222]Rn is used to further evaluate the performance of the cumulus convection scheme. Simulated distributions of [superscript 222]Rn are evaluated against observations at the surface and in the free troposphere, and compared with output from models that participated in the TransCom-CH4 Transport Model Intercomparison. From this comparison, we demonstrate that the proposed convective scheme in general is consistent with observed and modeled results
Increases in Regional Brain Volume Across Two Native South American Male Populations
Industrialized environments, despite benefits such as higher levels of formal education and lower rates of infections, can also have pernicious impacts upon brain atrophy. Partly for this reason, comparing age-related brain volume trajectories between industrialized and non-industrialized populations can help to suggest lifestyle correlates of brain health. The Tsimane, indigenous to the Bolivian Amazon, derive their subsistence from foraging and horticulture and are physically active. The Moseten, a mixed-ethnicity farming population, are physically active but less than the Tsimane. Within both populations (N = 1024; age range = 46–83), we calculated regional brain volumes from computed tomography and compared their cross-sectional trends with age to those of UK Biobank (UKBB) participants (N = 19,973; same age range). Surprisingly among Tsimane and Moseten (T/M) males, some parietal and occipital structures mediating visuospatial abilities exhibit small but significant increases in regional volume with age. UKBB males exhibit a steeper negative trend of regional volume with age in frontal and temporal structures compared to T/M males. However, T/M females exhibit significantly steeper rates of brain volume decrease with age compared to UKBB females, particularly for some cerebro-cortical structures (e.g., left subparietal cortex). Across the three populations, observed trends exhibit no interhemispheric asymmetry. In conclusion, the age-related rate of regional brain volume change may differ by lifestyle and sex. The lack of brain volume reduction with age is not known to exist in other human population, highlighting the putative role of lifestyle in constraining regional brain atrophy and promoting elements of non-industrialized lifestyle like higher physical activity
Molecular basis for increased susceptibility of Indigenous North Americans to seropositive rheumatoid arthritis
Objective The pathogenetic mechanisms by which HLA-DRB1 alleles are associated with anticitrullinated peptide antibody (ACPA)-positive rheumatoid arthritis (RA) are incompletely understood. RA high-risk HLA-DRB1 alleles are known to share a common motif, the ‘shared susceptibility epitope (SE)’. Here, the electropositive P4 pocket of HLA-DRB1 accommodates self-peptide residues containing citrulline but not arginine. HLA-DRB1 His/Phe13β stratifies with ACPA-positive RA, while His13βSer polymorphisms stratify with ACPA-negative RA and RA protection. Indigenous North American (INA) populations have high risk of early-onset ACPA-positive RA, whereby HLA-DRB1*04:04 and HLA-DRB1*14:02 are implicated as risk factors for RA in INA. However, HLA-DRB1*14:02 has a His13βSer polymorphism. Therefore, we aimed to verify this association and determine its molecular mechanism.
Methods HLA genotype was compared in 344 INA patients with RA and 352 controls. Structures of HLA-DRB1*1402-class II loaded with vimentin-64Arg59-71, vimentin-64Cit59-71 and fibrinogen β−74Cit69-81 were solved using X-ray crystallography. Vimentin-64Cit59-71-specific and vimentin59-71-specific CD4+ T cells were characterised by flow cytometry using peptide-histocompatibility leukocyte antigen (pHLA) tetramers. After sorting of antigen-specific T cells, TCRα and β-chains were analysed using multiplex, nested PCR and sequencing.
Results ACPA+ RA in INA was independently associated with HLA-DRB1*14:02. Consequent to the His13βSer polymorphism and altered P4 pocket of HLA-DRB1*14:02, both citrulline and arginine were accommodated in opposite orientations. Oligoclonal autoreactive CD4+ effector T cells reactive with both citrulline and arginine forms of vimentin59-71 were observed in patients with HLA-DRB1*14:02+ RA and at-risk ACPA- first-degree relatives. HLA-DRB1*14:02-vimentin59-71-specific and HLA-DRB1*14:02-vimentin-64Cit59-71-specific CD4+ memory T cells were phenotypically distinct populations.
Conclusion HLA-DRB1*14:02 broadens the capacity for citrullinated and native self-peptide presentation and T cell expansion, increasing risk of ACPA+ RA
Prevalence of Dementia and Mild Cognitive Impairment in Indigenous Bolivian Forager-Horticulturalists
Introduction
We evaluated the prevalence of dementia and mild cognitive impairment (MCI) in indigenous Tsimane and Moseten, who lead a subsistence lifestyle. Methods
Participants from population-based samples ≥ 60 years of age (n = 623) were assessed using adapted versions of the Modified Mini-Mental State Examination, informant interview, longitudinal cognitive testing and brain computed tomography (CT) scans. Results
Tsimane exhibited five cases of dementia (among n = 435; crude prevalence = 1.2%, 95% confidence interval [CI]: 0.4, 2.7); Moseten exhibited one case (among n = 169; crude prevalence = 0.6%, 95% CI: 0.0, 3.2), all age ≥ 80 years. Age-standardized MCI prevalence was 7.7% (95% CI: 5.2, 10.3) in Tsimane and 9.8% (95% CI: 4.9, 14.6) in Moseten. Cognitive impairment was associated with visuospatial impairments, parkinsonian symptoms, and vascular calcification in the basal ganglia. Discussion
The prevalence of dementia in this cohort is among the lowest in the world. Widespread intracranial medial arterial calcifications suggest a previously unrecognized, non-Alzheimer\u27s disease (AD) dementia phenotype
- …