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Abstract

Purpose—To determine optimal parameters for acquisition and processing of dynamic contrast-

enhanced (DCE) MRI to detect small changes in near normal low blood-brain barrier (BBB) 

permeability.

Methods—Using a contrast-to-noise ratio metric (K-CNR) for Ktrans precision and accuracy, the 

effects of kinetic model selection, scan duration, temporal resolution, signal drift and length of 

baseline on the estimation of low permeability values was evaluated with simulations.

Results—The Patlak model was shown to give the highest K-CNR at low Ktrans. The Ktrans 

transition point, above which other models gave superior results, was highly dependent on scan 

duration and tissue extravascular extracellular volume fraction (ve). The highest K-CNR for low 

Ktrans was obtained when Patlak model analysis was combined with long scan times (10-30 

minutes), modest temporal resolution (<60 seconds/image), and long baseline scans (1-4 minute). 

Signal drift as low as 3% was shown to affect the accuracy of Ktrans estimation with Patlak 

analysis.

Conclusion—DCE acquisition and modeling parameters are interdependent and should be 

optimized together for the tissue being imaged. Appropriately optimized protocols can detect even 

the subtlest changes in BBB integrity and may be used to probe the earliest changes in 

neurodegenerative diseases such as Alzheimer’s disease and Multiple Sclerosis.
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Introduction

Dynamic contrast-enhanced (DCE) MRI gives quantitative and semi-quantitative 

information about the integrity of the vascular system (1). It is commonly used to study a 

number of diseases such as cancer, stroke and multiple sclerosis (MS) (2-6). While 

originally developed to assess blood-brain barrier (BBB) integrity (7-10), it has also found 

many applications outside of the brain (3,11-14). The parameter of interest in BBB integrity 

is the transfer constant Ktrans (15), which describes the transfer rate of molecules from 

plasma space into interstitial space. Since the BBB permeability to molecules is size and 

transporter dependent (16-18), interpretation of Ktrans requires consideration of structural 

and physiological changes at play at the BBB as well as contrast agent (CA) being used to 

infer Ktrans. Most applications of DCE in the brain have focused on imaging relatively high 

BBB breakdown (such as observed in malignant tumors or stroke), rather than on subtle 

changes in the BBB, using small molecule CA. This is in part driven by the fact that CA 

extravasation in the highly compromised BBB is high, resulting in easier detection of the CA 

signal. Ktrans values in the intact or subtly damaged BBB are at least one to two orders of 

magnitude lower than those found when the BBB is highly compromised (8,19,20). Thus, it 

is much more difficult to measure.

Recent studies indicate a pathophysiological role for the BBB in diabetes (21), cognitive 

disorders such as mild cognitive impairment (MCI) (20,22), Alzheimer’s disease (AD) 

(23,24), MS (6,25-28) and chronic traumatic encephalopathy (CTE) (29-31). Although 

dysfunctional, changes in BBB integrity for these conditions are thought to be subtle and 

close to intact values (32). Early attempts to measure Ktrans in the normal appearing brain for 

MCI and AD failed to detect significant changes (33,34). These studies may have been 

hampered by their relatively long sampling interval and the semi-quantitative nature of their 

analyses. More recent studies acquired at higher field strengths and using more sophisticated 

kinetic modeling have determined that the Ktrans of healthy BBB is low but not zero and 

detected differences in MS patients compared to controls (19,26,28) as well as increases 

during normal aging and in MCI patients(20). Ktrans from these studies are within a range of 

previously reported BBB Ktrans values using small inert polar molecules in mammals 

(32,35,36).

Despite these developments and recent successes (19,20,26,28), optimal methods to collect 

and analyze DCE data in order to detect subtle changes to BBB integrity remain unclear 

(1,37,38). This imaging effort poses a distinct set of challenges because the contrast changes 

are much lower and it can take much longer for detectable leakage to occur. This places 

considerable demands on the imaging sequence and post-processing used to minimize noise 

and maximize contrast to detect these subtle changes (25,37).

The few studies that have applied DCE in the low permeability regime have used a wide 

range of different techniques. Taheri et al introduced a serial T1 mapping technique with low 

CA concentration (0.025 mmol/kg) injection, finding differences in white matter 

permeability between controls (Ki ≈ 3 ∗ 10−4 mL·g−1·min−1, Ki = Ktrans/[1-hematocrit]) and 

MS patients (28). Using a multiple dose injection protocol and a data-driven post-
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processing, Ingrisch et al reported differences between normal appearing white matter and 

MS lesions (6). They noted that a two compartment uptake model (8) was appropriate at the 

low permeability regime. Larsson and colleagues reported that the Patlak model can estimate 

low vascular permeability well (Ki ≈ 0.1 mL/100mL/min for normal brain tissue) (25,26). 

They also proposed that the combination of model-free estimation of perfusion (using the 

Tikhonov’s method, Tik) and the two-compartment exchange model (2CXM) can estimate 

BBB permeability across a wider range of Ktrans (19). In a subsequent study, Cramer et al 

compared the ability of Patlak, extended-Tofts and Tik-2CXM to estimate Ktrans, reporting 

the threshold for accurate Patlak estimation to be Ki ≈ 0.3 mL/100g/min (25). Accuracy of 

the extended Tofts model was shown to be very sensitive to blood volume and perfusion 

compared to the other two models. The authors also examined the effects of sampling 

interval and acquisition duration on Ktrans estimation, finding that the use of short sampling 

intervals and long acquisition times to be the most accurate. Recent work using the Patlak 

model with high spatial resolution and short sampling intervals clearly shows that low Ktrans 

determinations are possible and provide crucial information about BBB dysfunction (20).

While these findings provide some guidelines on acquisition parameters and post-processing 

methodology, it remains unclear from the published studies under what circumstances these 

recommendations hold. Most notably, the two parameters that dramatically affect the 

appropriateness of the Patlak model, imaging time and ve (extravascular extracellular 

volume fraction), have not been examined. It therefore remains difficult to currently draw 

specific, quantitative recommendations for ongoing studies. Thus, quantitative analytical 

methods that simplify the evaluation of how the different experimental factors combine to 

influence the accuracy, reliability, and ability to resolve changes in the measured Ktrans will 

greatly facilitate future study design.

Here, we introduce a metric, the contrast-to-noise ratio for Ktrans (subsequently referred to as 

K-CNR), which enables quantitative comparison of different models to estimate DCE 

vascular permeability. We demonstrate how K-CNR simplifies model selection analysis at 

low Ktrans given specific acquisition parameters. Conversely, using the Patlak model as an 

example, we show how K-CNR can guide the selection of optimized image acquisition 

parameters to maximize the model’s ability to resolve differences at low Ktrans. The impact 

of temporal resolution, acquisition time, signal drift and the number of baseline images on 

K-CNR are examined for a variety of physiological conditions.

Methods

DCE Simulations

A population averaged curve published by Parker et al (39) was modified for use as the 

simulated arterial input function (AIF). Briefly, the AIF curve is a mixture of two Gaussians 

plus two exponentials modulated with a sigmoid function:

(1)
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where Ca is the arterial plasma concentration, An, Tn, and σn are the scaling constants, 

centers and widths of the nth Gaussian; α and β are the amplitude and decay constant of the 

exponential; s and τ are the width and center of the sigmoid, respectively. To provide an AIF 

curve mimicking the behavior in our clinical datasets, different input parameters for 

Equation 1 were used for our simulations compared to those defined by Parker et al. The 

amplitude of the first pass bolus was lowered, and the bi-exponential decay constant was 

altered to accommodate the longer blood half-life of the MultiHance® (Bracco, Milan, Italy) 

CA used at our site. The parameters were manually adjusted to fit our population-averaged 

AIF.

Simulated tissue curves were generated by a convolution of the impulse response for a 

2CXM with the AIF (40). The 2CXM is described by:

(2)

where “⊗” is convolution and F± and K± are defined elsewhere (40). The free parameters 

used to define the 2CXM are Ktrans, ve, vp and Fp; where Ktrans is the blood-tissue transfer 

constant, ve is the extravascular extracellular volume fraction, Fp is plasma flow and vp is 

plasma volume fraction. Unless stated otherwise these parameters were set to ve = 0.05, vp = 

0.025, and Fp = 0.130 ml/min/ml assuming 1g = 1ml. These values are within expected 

physiological ranges (41-45), and similar to average 2CXM values measured in our healthy 

controls.

The AIF curve and tissue curves were generated at sampling intervals of 100 ms and 1 

second respectively. These intervals are significantly faster than the rate of change of the 

curves and capture all features of the curves; a longer interval was used for the tissue curve 

to take advantage of its slower rate of change to reduce computation time. The temporal 

resolution of DCE-MRI studies is known to influence the accuracy of parameter estimation 

(11,25,46-50). Thus, the generated tissue curves and the AIF were down-sampled to study 

the effect of temporal resolution on Ktrans analysis. This was done using a Gaussian filter 

with the standard deviation equal to a third of the sampling window of the desired temporal 

resolution. This incorporates all the information in the sampling window and simulates the 

center weighting imposed by k-space sampling.

To evaluate the effect of signal-to-noise ratio (SNR) on DCE analysis, MR-realistic noise 

was added to achieve the stated SNR levels by adding Gaussian noise to the real and 

imaginary channels (the MR signal was assumed to be real) and then taking the modulus. 

The AIF and tissue concentration curves were converted to MRI signal intensity curves 

using the standard spoiled gradient echo (SPGR) equation at steady state (51), with TR=8.3 

ms, FA=15°, blood pre T1=1200 ms, and tissue pre T1=1800 ms. The stated SNR values are 

the SNR in the tissue prior to CA injection. Unless otherwise stated we defined SNR=30 as 

this reflects the SNR observed in our clinical datasets. These noise-added signal intensity 

curves were then converted back into concentration curves and used to calculate the DCE 

parameters.
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Timing alignments between the AIF and sampling window may also affect the accuracy and 

precision of Ktrans measurement (50), AIF and tissue curve simulation studies were also 

performed with jitter offsets at 2 second interval increments within each sampling interval. 

This was only done for datasets with sampling intervals greater than 2 seconds.

Accuracy and precision of Ktrans estimation using different models and acquisition variables 

for different tissue parameters were assessed using the K-CNR (see below) by adding noise 

(as described above) and fitting 1000 times per parameter combination. The effect of the 

number of baseline images was evaluated by generating and fitting curves with baselines 

ranging from 15 to 240 s prior to CA injection.

To explore the effect of signal drift, a constant ranging from −10% to +10% of the baseline 

signal was added to the generated AIF and tissue curves prior to noise addition and Ktrans 

estimation. To simulate drift correction, a noise-added phantom (to serve as an intensity 

standard) with signal intensity equivalent to half the maximal AIF intensity was used to 

derive correctional scaling factors across the time series. Robust fitting of the scaling factor 

versus time curve to a fourth-order polynomial was performed to minimize the noise 

amplification of using the scaling factor directly. Ktrans was estimated using scale factor-

corrected AIF and tissue curves and compared to their uncorrected counterparts.

Clinical studies

Subjects

Participants with no significant history of neurological disease were recruited through the 

University of Southern California (USC) from May 2013 to May 2014. The study was 

approved by the USC Institutional Review Board. All participants signed informed consent. 

We enrolled six participants of both genders with ages 23-47. All procedures were 

performed at the Keck Medical Center of USC. All participants underwent a medical 

examination as well as blood draw to ensure appropriate kidney function for CA 

administration. MRI scans were screened and no subcortical white matter lesions were found 

on any subjects. MRI scans of the brain were performed on a total of six participants.

Magnetic resonance imaging

All images were obtained on a GE 3T HDXT MR scanner with a standard eight-channel 

array head coil. Anatomical coronal spin echo T2-weighted scan were first obtained through 

the hippocampi (TR/TE 1550/97.15 ms, NEX = 1, slice thickness 5 mm with no gap, FOV = 

188 × 180 mm, matrix size = 384 × 384). Baseline coronal T1-weighted maps were then 

acquired using a T1-weighted 3D SPGR pulse sequence and variable flip angle method 

using flip angles of 2°, 5° and 10°. (TR/TE = 8.29/3.08 ms, NEX = 1, slice thickness 5 mm 

with no gap, FOV 188 × 180 mm, matrix size 160 × 160). Coronal DCE MRI covering the 

hippocampi and temporal lobes were acquired using a T1-weighted 3D SPGR pulse 

sequence (FA = 15°, TR/TE = 8.29/3.09 ms, NEX = 1, FOV 180 × 135 × 60 mm, matrix size 

160 × 120 × 12, voxel size was 1.125 × 1.125 × 5 mm3). This sequence was repeated for a 

total of 16 minutes with an approximate temporal resolution of 15.4 seconds. Multihance 

(0.05 mmol/kg) was administered intravenously into the antecubital vein using a power 
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injector, at a rate of 3mL/sec followed by a 25mL saline flush, 30 seconds into the DCE 

scan.

DCE data analysis

Post-processing of the collected MRI data and simulated data was done using in-house DCE 

processing software implemented in Matlab (The MathWorks Inc., Natick, MA). Plasma 

concentrations were assumed with Hct=0.45 for all cases. For the acquired data the AIF was 

obtained from the common carotid artery.

Three different kinetic models were examined: Patlak, extended Tofts, and the 2CXM.

The 2CXM, introduced above, is the most general model considered in this analysis with 

four free variables. The 2CXM assumes two well-mixed compartments (blood plasma and 

extracellular extravascular tissue) and allows for general transport back and forth between 

these compartments. Blood flow is considered finite, so mixing in the capillaries is assumed.

The extended Tofts model is a simplification of the 2CXM, with three free variables it 

assumes minimal mixing occurs in the capillaries (Fp=∞), and is defined by:

(3)

The Patlak model is a simplification of the extended Tofts, with two free variables it assumes 

minimal back-flux from the tissue back to the arteries, or equivalently that Ca(t)>>C(t). It is 

defined by:

(4)

All these models assume well mixed compartments; a thorough analysis of the mathematics 

and assumptions has been examined in a recent review (15).

The experimental data were converted to concentration curves using the acquired T1 maps 

and the standard steady state incoherent equation.

(5)

The concentration curves were fitted to equations (2)-(4) using non-linear fitting routines 

with the trust-region-reflective algorithm in Matlab. To ensure that the fitting converges on a 

global minimum, tolerances were set to 10−12, 10−, 50, and 50 for the function tolerance, 

parameter tolerance, maximum iterations, and maximum function evaluations respectively. 

Multiple starting locations of Ktrans were used during the fit convergence process with the 

minimal residual used as the final value. Other kinetic parameters were less sensitive to 

initial starting values; thus, this strategy was not used in those cases.
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To assess the impact of different imaging parameters to accurately measure and detect group 

changes in Ktrans during simulations, we define a K-CNR metric, which estimates the CNR 

that would be observed for a 10% change in Ktrans:

(6)

where Ktrans(true) is the defined Ktrans value used to generate the simulated curve, Ktrans(fitted) 

is the median of the output Ktrans values obtained by fitting the simulated curve with 

software. The derivative is the slope of the Ktrans(fitted) versus Ktrans(true), this is multiplied 

by 0.1·Ktrans(true) to estimate the contrast observed for a 10% change in Ktrans(true). σ is the 

standard deviation of the 1000 repetitions at that specific Ktrans. The slope was estimated 

using a Savitzky-Golay filter (52) with a seven point quadratic polynomial kernel to suppress 

noise in the derivative calculation, and a three point moving average was applied to the K-

CNR to reduce noise from the standard deviation term. This metric can be interpreted the 

same as CNR is normally interpreted, it is a respected measure of precision and contrast, and 

not directly sensitive to the accuracy of the model.

To ensure that the above simulation strategy was capable of generating realistic DCE curves 

that had the same characteristics of the measured clinical data, a number of steps were taken. 

First, the simulated curves were visually compared to the measured curves to ensure that no 

significant features of the curves were different and that the noise levels were similar. Once 

we had established that the curves were qualitatively the same a quantitative comparison was 

performed. Regions of interest (ROI) were drawn in normal appearing grey matter (GM) and 

white matter (WM) regions in control datasets (Figure 1A). The median values for all four 

parameters in the 2CXM derived from these ROIs were recorded. Simulated DCE curves 

were then generated using these values and the population AIF as described above. Curve 

fitting was performed using the three different models on the simulated curves and the fit 

values from the simulations were compared to the measured values in the subjects for all 

three different models. This ensured that the population AIF and noise addition used to 

generate the simulated curves did not significantly alter the characteristics of the curves. It 

also ensures that the simulated curves reflect the behavior of the measured curves for all 

three models (2CXM, extended Tofts, and Patlak). The 2CXM was used as it is the most 

general model; thus provides the best estimate of the true tissue values. Although the plasma 

flow values derived from this model might not be completely accurate due to the temporal 

resolution (15.4 seconds) of the DCE MRI data, the calculated median value of 0.13 

ml/min/ml (or a blood flow of 0.29 ml/min/ml) is within the expected range (43) and so was 

considered sufficient for the simulations.

Results

Simulation curve fits with 2CXM and Patlak are consistent with clinical data fits

Comparisons between measured data fits and simulated data fits are shown in Figure 1. For 

the various models, simulated and measured curves were not significantly different; with 

Patlak giving values lower than 2CXM, and extended Tofts higher than 2CXM (Figure 1B). 
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The noise characteristics of the models were also accurately reproduced with the simulation 

matching very close to the measured data, again with extended Tofts showing the highest 

standard deviation, and Patlak the lowest.

The measured data were also compared against the simulations in a voxel-wise comparison. 

All brain voxels from the healthy controls were initially considered, then voxels were 

removed that had poor fits (approximately the top 8% of residuals) or vp > 10% (to eliminate 

blood vessels). The fitted 2CXM values were compared to the fitted Patlak values for 

various ve values. Simulation curves comparing 2CXM and Patlak values generated at the 

corresponding ve were overlaid for comparison (Figure 1C). Simulations corresponded very 

well to the collected data for the majority of voxels, with the Patlak model showing the 

expected underestimation at higher Ktrans values for both measured and simulated data. 

Comparison of 2CXM versus extended Tofts fitted values with their simulated counterparts 

showed a similar pattern at fixed vp (Figure 1D), further supporting applicability of our 

simulations to reflect clinically measured data.

Patlak model provides good estimation of true values in low Ktrans regimes

Different models were directly compared by fitting to the same simulated curves and 

examining their K-CNR (Figure 2A). The Patlak model had the highest K-CNR for low 

Ktrans values, while extended Tofts and 2CXM had higher K-CNR at higher Ktrans (Figure 

2B). The exact crossover point between these two regimes depended on the acquisition time 

and the ve value (Figure 2C).

Effects of acquisition time on Ktrans estimation

Since the Patlak model had the highest K-CNR in the range of Ktrans values found in intact 

BBB, the Patlak model was further evaluated to determine the optimal acquisition time. As 

expected, the optimal acquisition time was found to depend on the Ktrans value: shorter scan 

times give better K-CNR for higher Ktrans values as this limits the amount of CA backflux 

that is captured during imaging, which confounds the Patlak Ktrans estimation (Figure 3).

Effects of sampling rate on Ktrans estimation

The effect of sampling rate on K-CNR was evaluated for the Patlak model in two different 

scenarios. First, the sampling interval was lengthened by a factor and the SNR was increased 

by the square root of the factor (Figure 4A). This simulates the scenario whereby additional 

averages were collected or if additional partitions were collected in a 3D scan to increase the 

field of view. Second, the sampling interval was lengthened with no change to the SNR 

(Figure 4B). This simulates the scenario whereby more slices were collected in a 2D scan to 

increase the FOV. When longer sampling intervals lead to increases in SNR, the K-CNR 

held mostly constant up to a sampling interval of 60 seconds, longer than that it fell 

significantly (Figure 4A). When changes in sampling interval had no effect on the SNR 

(SNR held constant), each lengthening in sampling interval caused a steady and significant 

reduction in the K-CNR (Figure 4B).
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Effects of baseline acquisition duration on Ktrans estimation

The length of the baseline scan was evaluated for its effect on the K-CNR values. From 

Figure 5, it can be seen that acquiring a longer baseline scan significantly increases the K-

CNR of the calculated DCE parameters by reducing the variance of the fit values. Adding as 

little as 30 seconds to the baseline can increase the K-CNR by approximately 30% (moving 

from a 30 second to a 60 second baseline).

Effects of signal drift on Ktrans estimation

A constant linear drift up or down causes an under or over estimation of Ktrans, respectively. 

This effect will be consistent in a single study, but across multiple studies variation in the 

drift will cause variations in the bias it introduces. This will show up as an additional source 

of variance and uncertainty for inter-study comparisons. To model this, a range of drifts were 

combined together for analysis. Figures 6 shows the effect of this increased variance on the 

K-CNR values, the drift causes decreases of K-CNR in all models, especially in the Patlak 

model (Figure 6A-C). Drift correction using an external intensity standard largely eliminated 

these discrepancies (Figures 6D-F).

Discussion

The comparison of the measured data to simulations showed excellent correspondence 

(Figure 1). This shows that the method of simulation curve generation provides realistic 

DCE curves that are nearly identical to real measured curves in both fitted values and noise 

characteristics. The fitted Ktrans values from the 2CXM are reflective of more accurate 

values across the entire Ktrans range; the extended Tofts generally overestimates Ktrans; and 

Patlak does well at low permeability values (≤5 × 10−3 min−1 ), but underestimates Ktrans at 

larger values. These findings validate previous studies (6,25).

While this may suggest that one should apply the 2CXM across all Ktrans, it is limited by 

several factors. The accuracy of the Ktrans values in the extended Tofts and the 2CXM 

models are strongly affected by the temporal resolution used, likely due to their dependency 

on accurate perfusion and blood volume estimation (25). Given that 2CXM requires the 

fitting of four parameters, the potential for curve fitting error is high (25). Past studies 

examining how other models perform in Ktrans estimation demonstrated that the Patlak 

model accurately estimates low Ktrans values, consistent with the fact that the model neglects 

backflux (19,25). To date however, these studies have focused on the accuracy of Ktrans 

estimations for the respective models. From Figure 2A, we see that Ktrans precision is also 

important for model selection. Figure 2A shows that, while both 2CXM and Patlak may 

estimate low Ktrans accurately, the error bounds are much smaller for Patlak. This has 

practical implications, especially when we wish to differentiate small differences in 

permeability. In these scenarios we show that Patlak will give a higher K-CNR due to its 

superior precision, and are able to predict the cross over point where 2CXM or Extended 

Tofts will start outperforming Patlak. The exact value of the crossover points, and its strong 

dependence on ve and the acquisition time, has not been shown before. This superior 

sensitivity has enabled Patlak to detect small regional differences between grey and white 

matter due to its high precision (20).
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The K-CNR metric captures both Ktrans contrast and precision for each model in a single 

value. This enables facile evaluation of the suitability of different models in estimating Ktrans 

as a functional of multiple imaging variables. Using the K-CNR metric, we show that the 

Patlak model clearly outperformed the other two models in the low Ktrans regime due to its 

high precision (Figure 2). The precision is a direct result of the simplicity of the model, with 

only two free parameters it is less likely to fit the noise and is therefore very stable. 

Eventually the high precision is overwhelmed by its Ktrans underestimation at higher Ktrans 

values, resulting in a sharp drop in K-CNR. While K-CNR offers the ability to easily 

compare various models, it does not capture all aspects of image quality. In particular it is 

not the best measure of model accuracy. Despite this shortcoming it is a valuable tool to 

make clear comparisons across models for a wide variety of parameters.

The sensitivity of the Patlak model to backflux places direct limits on acquisition time, and 

is dependent on the Ktrans and ve of the tissue being measured. Higher Ktrans values using the 

Patlak model can be accurately estimated if the acquisition time is kept sufficiently short 

(Figure 2C). This is generally an acceptable trade off; higher Ktrans does not need long scan 

times to achieve sufficient K-CNR. However, at higher Ktrans values the other models 

generally outperform Patlak even if the Patlak acquisition time is sufficiently short. Thus, if 

the tissue of interest is expected to have high Ktrans then analysis with a different model will 

generally be more appropriate.

Acquisition times longer than 15 minutes can lead to significant improvement in the K-CNR 

using the Patlak model, but only for low Ktrans values (Ktrans < 2 * 10−3/min, Figure 3). 

Long scan times may be beneficial in normal healthy mice where very low Ktrans values 

have been measured with DCE-MRI using Gd-DTPA (Ki = 0.6±1.9 * 10−3 mL/g/min (53)). 

However, they should not be necessary in humans, which show higher values in healthy 

brain ranging from 0.5 – 4.5 * 10−3/min as reported here and elsewhere (19,20,25-28). That 

scan times of 15 minutes are sufficient is of particular importance in large multicenter trials 

where extending scan time is extremely difficult.

Generally, the Patlak model shows almost no loss of K-CNR up to a sampling interval of 

about sixty seconds (Figure 4A). Anything longer leads to a sharp increase in the variance of 

the fit parameters and a corresponding decrease in K-CNR. However, this K-CNR stability 

only occurs when the longer sampling interval leads to higher SNR, e.g. if extra partitions 

are collected to increase the FOV in a 3D scan. If the longer sampling interval does not lead 

to gains in SNR, e.g. adding more slices to a 2D scan, then K-CNR steadily drops with each 

decrease in sampling interval (Figure 4B). The use of 3D scans, therefore, gives extra 

flexibility to increase the FOV and gain more coverage without sacrificing much K-CNR - 

up to a point. Any increase in FOV in a 2D scan leads to a direct reduction of the K-CNR of 

the study. It is therefore advisable to use 3D scans whenever possible.

Figure 4A also shows that there is no benefit from running averages during a DCE 

experiment. The gain in SNR is canceled by the lower sampling interval leading to a net 

decrease in K-CNR. The extra time points in the short sampling interval scans have a noise 

reducing effect on fit parameters by adding additional constraints to the fit. Averaging 
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removes these extra constraints and reduces the amount of information extracted from the 

data curve.

The number of baseline images collected is an acquisition parameter often neglected and 

rarely optimized in DCE protocols. The number of pre-injection images acquired vary 

greatly in the literature, from no baseline at all (54), one pre-contrast time point (28), more 

than 30 seconds (55,56) and a wide time range in between (6,39,57). Too short of a baseline 

is suboptimal as the concentration curves are calculated partially as the ratio of the pre-

injection and post-injection signal intensities. The variance of the ratio will be 

approximately proportional to the sum of the individual variances, so reducing the variance 

of the pre-injection scans directly reduces the variance of the concentration curve. This can 

be a very time efficient way to increase the sensitivity of a study, as adding an extra two 

minutes to the baseline measurement could potentially double the K-CNR of the study 

(Figure 5) depending on the initial SNR and acquisition time. Table 1 outlines some typical 

examples; in some cases it is optimal to spend up to 1/3 of the imaging time collecting the 

baseline images.

Previously, the effects of scanner drift on DCE results were reported to be negligible, due to 

either ROI averaging of time intensity curves cancelling out those effects, or that the 

magnitude of the drift is within the uncertainty of Ktrans estimation (25,37). Our results 

suggest that the effects of signal drift on DCE parameter estimation are significant especially 

when comparing studies from different scanners or subjects. This is most prominent with 

Patlak fitting, but is present for all the models examined. Comparing Ktrans derived from 

curves with different drifts can drastically increase the uncertainty of the Ktrans comparisons 

(Figure 6), effectively reducing one’s ability to resolve small Ktrans changes. Patlak is 

especially vulnerable to these types of inter-study errors as its lower contrast is sensitive to 

increases in variance. Drift correction can essentially eliminate this error. We assume here 

that the magnitude of the drift across the phantom, tissue and AIF ROIs are the same. In 

practice, this is likely not the case (58). How this impacts DCE parameter estimation needs 

to be explored in future studies.

When performing non-linear curve fitting, convergence to a local rather than global 

minimum is always a concern. This is a significant issue in DCE fitting. In Patlak, which can 

be linearized, we achieve good results by using the output from a linear fit as the starting 

location for a non-linear fit. This causes the non-linear fit to converge quickly and reliably 

giving more accurate values. To avoid local minimum in the other models we use multiple 

different starting locations, which improves the chances of finding the global minimum. In 

this regard, the starting value of Ktrans had the largest effect on the final value and it was 

necessary to try multiple different Ktrans starting values to reliably find the global minimum. 

It was also quite effective to constrain all the parameters to physiologically realistic values. 

Specifically, it was helpful to put a lower limit on ve of 1-2%. Without this constraint there 

was instability at very low Ktrans values; the ve fit tends to fall to zero and the fit Ktrans to 

rise to relatively high values. This instability at low Ktrans is easily fixed by constraining ve. 

Other groups have reported difficulty in getting 2CXM to properly converge to accurate 

values (19). We did not find this to be the case, as our 2CXM and extended Tofts models 

both converged with both simulated and measured data. Poor convergence has been a 
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criticism of the 2CXM (59), but with proper selection of convergence tolerances, constraints 

on parameter ranges, and multiple starting locations we have not found this to be an issue.

The values that the 2CXM generates for our measured data in healthy controls largely fell 

within expected physiological ranges, with the exception of ve. The measured values of ve 

(3.3% and 5.1% median GM and WM, respectively and 7.4% and 6.4% mean GM and WM, 

respectively) are significantly lower than the expected value of approximately 15-30% (45) 

as measured with diffusion techniques. There could be a number of explanations for this 

difference. First, the measured ve in this study will be lower than the true ve due to the 

partial albumin binding of the Multihance used in this study. The partial binding to albumin 

extends the blood half-life of the CA and will cause an underestimation of ve directly 

proportional to the extent of binding. Unfortunately, it is difficult to estimate the degree that 

it will be underestimated as the published binding affinities have huge uncertainties so the 

amount of bound CA could be anywhere from 2%-30% (60,61). Due to the significantly 

extended blood half-life the binding is probably closer to 30% than 2% and is likely a source 

of significant underestimation of ve. Second, the extravascular extracellular space sampled 

by the CA may be different than the diffusion space mentioned above. Restrictions in the 

diffusion of the CA away from the blood vessels could cause the effective space they inhabit 

to be smaller than the actual space and give lower ve values. Third, of all four parameters in 

the 2CXM the curves contain the least amount of information about ve as the low leakage 

rates do not allow enough time for the extravascular extracellular compartment to fill with 

CA. Therefore the ve values have a much lower precision than the other parameters, this low 

precision likely contributes to the low measured values. Finally, deficiencies in 

measurements techniques, insufficient temporal resolution, or poor curve fitting all are 

known to bias the DCE values, and it could be that these biases combined with the 

previously mentioned reasons could cause low ve values to be measured. An accurate 

measurement of Ktrans should not be taken as an indication that the other fit parameters (ve, 

vp, and fp) will also be accurate.

The partial albumin binding of Multihance mentioned above could also affect the measured 

Ktrans values. The magnitude of the change will depend on the binding affinity of 

Multihance, but as stated above this value is quite ill determined (60,61). Without a 

reasonable value it is hard to predict if this will be a significant effect. To our knowledge no 

study has yet examined the differences between different Gd based contrast agents, this 

could be an important question for future studies.

In conclusion, we have examined the effects of multiple scan parameters and modeling 

options on the ability to detect small changes in low Ktrans values that can be used to detect 

subtle changes in BBB permeability. We have defined a K-CNR metric that highlights 

differences between models. Just as improving image CNR increases our ability to 

differentiate between regions of interest, improving K-CNR leads to better defined Ktrans 

values. Using this K-CNR metric, we found that the Patlak model gives the best results in 

these circumstances when combined with fairly long scan times (10-30 minutes), modest 

temporal resolution (<60 seconds/image), and long baseline scans (1-4 minutes). These 

parameters can be used to detect even the subtlest changes in the integrity of the BBB and 

may be used to probe the earliest changes in neurodegenerative diseases.
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Figure 1. 
Simulation results compared to collected data in healthy controls. A) Typical ROIs for a 

single subject. B) Mean values and standard deviations of measured Ktrans values from GM 

and WM regions defined in the subjects correspond well to simulated results. Simulated 

curves were generated and all three models were fit to the simulated data to ensure that the 

population AIF and generating procedures would give values and noise characteristics 

similar to the measured data. The similar results for each model show that the simulated 

curves are representative of the real data. C) Each dot represents a voxel from a healthy 

control and the black lines are simulation results using the central ve value measured from 

the clinical data, error bars on simulation results excluded for clarity. D) Same as C, but 

comparing extended Tofts to 2XCM and using the central vp value measured from the 

clinical data. Error bars are the standard deviation. The measured voxels follow the 

simulation results extremely well showing the simulations captures the different behavior of 

each model. Dotted line indicates slope of unity, i.e. where Patlak or extended Tofts fit is 

identical to 2CXM fit.
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Figure 2. 
The much lower variance in the Patlak model leads to significantly better K-CNR values 

compared to the extended Tofts and 2CXM models at low Ktrans. At higher Ktrans significant 

backflux starts to flatten the Patlak response leading to a loss of contrast and lower CNR 

values. A) Median fits and standard deviations for the different models, This plot was used 

to calculate the K-CNR values. B) For a scan time of 15 minutes and a ve=0.05 this 

crossover occurs around Ktrans=5*10−3/min (arrow). C) Different scans times and ve values 

lead to different cross over points, below which Patlak outperforms 2CXM model. For 

clarity only the crossover points for the 2CXM model are shown, the extended Tofts are 

almost identical.
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Figure 3. 
The optimal scan time depends on the Ktrans value for the Patlak model, as long scan times 

and high Ktrans will lead to significant backflux and poor results. Scanning longer than 15 

minutes is only beneficial for the very lowest Ktrans values, and longer than 5 minutes leads 

to sharp drops in the K-CNR of Ktrans > 10*10−3/min.
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Figure 4. 
The effect of sampling rate on K-CNR for the Patlak model depends on the effect adjusting 

the sampling interval has on the SNR of the scan, two different scenarios are considered. A) 

Lengthened sampling interval increases the SNR, as would happen by adding averages or 

increasing the matrix size and field of view together. Only small differences are seen 

between sampling intervals shorter than 60 seconds, while sampling intervals longer than 60 

seconds lead to significant K-CNR loss. B) Changing the sampling interval has no effect on 

SNR (SNR is held constant), as would happen by adding or removing slices in a 2D scan. In 

this case longer sampling intervals lead to a consistent and significant decrease in the K-

CNR.
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Figure 5. 
The concentration curves for both the AIF and tissue are calculated relative to the baseline 

images collected before CA injection. Thus increasing the number of baseline images, and 

therefore baseline SNR, increases the SNR of all calculated values. This is probably the 

most efficient way to increase the SNR and CNR of the entire DCE study. Temporal 

resolutions was 15 sec.
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Figure 6. 
Drift correction improves precision for inter-study comparison. Patlak is especially sensitive 

to drift as its lower contrast makes it more sensitive to any increase in variance. Unlike the 

other variables considered here, signal drift is not a parameter than can be easily controlled 

or defined a priori. However, it can be largely corrected for using an intensity standard, a 

small tube of water placed in the FOV whose signal can be used to estimate and remove the 

drift.
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Table 1

Optimal Baseline Scan Times Differ for High and Low Ktrans

Total Available Scan
Time

Optimal Baseline Time
Ktrans=1e−3/min

Optimal Baseline Time
Ktrans=5e−3/min

10 min 1 min 2 min

15 min 3 min 5 min

30 min 4 min >15 min

45 min 8 min >30 min

For a given total scan time, the optimal division of time between pre-contrast (baseline) and post-contrast depends on the tissue Ktrans and the scan 

duration. Calculated using the Patlak model with ve=0.05. The baseline times are very long for 30-45 minutes and Ktrans=5e−3/min as these scan 

times extend well beyond the no backflux assumption for the Patlak model, in this situation a different model would give superior results.
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