16 research outputs found
Adecuación del software •Dosaviña• al método LWA (Leaf Wall Area) para la determinación del volumen de aplicación en viña
One of the most controversial aspects in the application of pesticides in vineyards, is determining the optimal treatment volume, given the large number of factors involved. To help farmers in this issue, there are tools such as Dosaviña software, which takes into account all the factors affecting this decision and calculates the application volume according to the vegetation to be treated. The main objective of this project is to change the current calculation method of this program, which is based on the volume of vegetation or Tree Row Volume (TRV), by another one based on the surface of vegetation or Leaf Wall Area (LWA), given the current European trends. This requires the study of a data set of field trials conducted over the past 20 years (1995-2015), complemented with new field trials conducted with the same objective. Finally, we succeeded in establishing a reliable calculation method of the application volume based on LWA, for most vegetation traits. Basically it involves multiplying the LWA index by a factor of 0.3, thus obtaining optimal broth volume for vegetation. It was also concluded that the application volume could be calculated considering only the height of the vegetation.Un dels aspectes més controvertits en l'aplicació de fitosanitaris en vinya, és la determinació del volum òptim de tractament, donat l'elevat nombre de factors que hi intervenen. Per ajudar a l'agricultor existeixen eines com el programari Dosaviña que té en compte tots els factors que afecten aquesta decisió i calcula un volum d'aplicació d'acord amb la vegetació a tractar. L'objectiu principal d'aquest projecte és canviar el mètode de càlcul actual del programa, basat en el volum de vegetació o Tree Row Volume (TRV), per un basat en la superfície de vegetació o Leaf Wall Area (LWA), donada l'actual tendència europea. Per a això es van analitzar una sèrie de dades d'assaigs de camp realitzats en els últims 20 anys (1995-2015) i es van realitzar uns assajos de camp amb l'objectiu d'establir un mètode de càlcul fiable basat el LWA. Finalment es va aconseguir establir un mètode de càlcul fiable, per a la majoria de vegetacions, del volum d'aplicació basat en el LWA, que consisteix en multiplicar aquest índex per un coeficient de 0.3, obtenint així el volum de brou òptim per a la vegetació. També es va arribar a la conclusió que es podria calcular el volum d'aplicació considerant només l'alçada de la vegetació.Resumen Uno de los aspectos más controvertidos en la aplicación de fitosanitarios en viña, es la determinación del volumen óptimo de tratamiento, dado el elevado número de factores que intervienen. Para ayudar al agricultor existen herramientas como el software Dosaviña que tiene en cuenta todos los factores que afectan a esta decisión y calcula un volumen de aplicación acorde a la vegetación a tratar. El objetivo principal de este proyecto es cambiar el método de cálculo actual del programa, basado en el volumen de vegetación o Tree Row Volume (TRV), por uno basado en la superficie de vegetación o Leaf Wall Area (LWA), dada la actual tendencia europea. Para ello se analizaron una serie de datos de ensayos de campo realizados en los últimos 20 años (1995-2015) y se realizaron unos ensayos de campo con el objetivo de establecer un método de cálculo fiable basado el LWA. Finalmente se consiguió establecer un método de cálculo fiable, para la mayoría de vegetaciones, del volumen de aplicación basado en el LWA, que consiste en multiplicar este índice por un coeficiente de 0.3, obteniendo así el volumen de caldo óptimo para la vegetación. También se llegó a la conclusión de que se podría calcular el volumen de aplicación considerando solo la altura de la vegetación
Adecuación del software •Dosaviña• al método LWA (Leaf Wall Area) para la determinación del volumen de aplicación en viña
One of the most controversial aspects in the application of pesticides in vineyards, is determining the optimal treatment volume, given the large number of factors involved. To help farmers in this issue, there are tools such as Dosaviña software, which takes into account all the factors affecting this decision and calculates the application volume according to the vegetation to be treated. The main objective of this project is to change the current calculation method of this program, which is based on the volume of vegetation or Tree Row Volume (TRV), by another one based on the surface of vegetation or Leaf Wall Area (LWA), given the current European trends. This requires the study of a data set of field trials conducted over the past 20 years (1995-2015), complemented with new field trials conducted with the same objective. Finally, we succeeded in establishing a reliable calculation method of the application volume based on LWA, for most vegetation traits. Basically it involves multiplying the LWA index by a factor of 0.3, thus obtaining optimal broth volume for vegetation. It was also concluded that the application volume could be calculated considering only the height of the vegetation.Un dels aspectes més controvertits en l'aplicació de fitosanitaris en vinya, és la determinació del volum òptim de tractament, donat l'elevat nombre de factors que hi intervenen. Per ajudar a l'agricultor existeixen eines com el programari Dosaviña que té en compte tots els factors que afecten aquesta decisió i calcula un volum d'aplicació d'acord amb la vegetació a tractar. L'objectiu principal d'aquest projecte és canviar el mètode de càlcul actual del programa, basat en el volum de vegetació o Tree Row Volume (TRV), per un basat en la superfície de vegetació o Leaf Wall Area (LWA), donada l'actual tendència europea. Per a això es van analitzar una sèrie de dades d'assaigs de camp realitzats en els últims 20 anys (1995-2015) i es van realitzar uns assajos de camp amb l'objectiu d'establir un mètode de càlcul fiable basat el LWA. Finalment es va aconseguir establir un mètode de càlcul fiable, per a la majoria de vegetacions, del volum d'aplicació basat en el LWA, que consisteix en multiplicar aquest índex per un coeficient de 0.3, obtenint així el volum de brou òptim per a la vegetació. També es va arribar a la conclusió que es podria calcular el volum d'aplicació considerant només l'alçada de la vegetació.Resumen Uno de los aspectos más controvertidos en la aplicación de fitosanitarios en viña, es la determinación del volumen óptimo de tratamiento, dado el elevado número de factores que intervienen. Para ayudar al agricultor existen herramientas como el software Dosaviña que tiene en cuenta todos los factores que afectan a esta decisión y calcula un volumen de aplicación acorde a la vegetación a tratar. El objetivo principal de este proyecto es cambiar el método de cálculo actual del programa, basado en el volumen de vegetación o Tree Row Volume (TRV), por uno basado en la superficie de vegetación o Leaf Wall Area (LWA), dada la actual tendencia europea. Para ello se analizaron una serie de datos de ensayos de campo realizados en los últimos 20 años (1995-2015) y se realizaron unos ensayos de campo con el objetivo de establecer un método de cálculo fiable basado el LWA. Finalmente se consiguió establecer un método de cálculo fiable, para la mayoría de vegetaciones, del volumen de aplicación basado en el LWA, que consiste en multiplicar este índice por un coeficiente de 0.3, obteniendo así el volumen de caldo óptimo para la vegetación. También se llegó a la conclusión de que se podría calcular el volumen de aplicación considerando solo la altura de la vegetación
Adecuación del software •Dosaviña• al método LWA (Leaf Wall Area) para la determinación del volumen de aplicación en viña
One of the most controversial aspects in the application of pesticides in vineyards, is determining the optimal treatment volume, given the large number of factors involved. To help farmers in this issue, there are tools such as Dosaviña software, which takes into account all the factors affecting this decision and calculates the application volume according to the vegetation to be treated. The main objective of this project is to change the current calculation method of this program, which is based on the volume of vegetation or Tree Row Volume (TRV), by another one based on the surface of vegetation or Leaf Wall Area (LWA), given the current European trends. This requires the study of a data set of field trials conducted over the past 20 years (1995-2015), complemented with new field trials conducted with the same objective. Finally, we succeeded in establishing a reliable calculation method of the application volume based on LWA, for most vegetation traits. Basically it involves multiplying the LWA index by a factor of 0.3, thus obtaining optimal broth volume for vegetation. It was also concluded that the application volume could be calculated considering only the height of the vegetation.Un dels aspectes més controvertits en l'aplicació de fitosanitaris en vinya, és la determinació del volum òptim de tractament, donat l'elevat nombre de factors que hi intervenen. Per ajudar a l'agricultor existeixen eines com el programari Dosaviña que té en compte tots els factors que afecten aquesta decisió i calcula un volum d'aplicació d'acord amb la vegetació a tractar. L'objectiu principal d'aquest projecte és canviar el mètode de càlcul actual del programa, basat en el volum de vegetació o Tree Row Volume (TRV), per un basat en la superfície de vegetació o Leaf Wall Area (LWA), donada l'actual tendència europea. Per a això es van analitzar una sèrie de dades d'assaigs de camp realitzats en els últims 20 anys (1995-2015) i es van realitzar uns assajos de camp amb l'objectiu d'establir un mètode de càlcul fiable basat el LWA. Finalment es va aconseguir establir un mètode de càlcul fiable, per a la majoria de vegetacions, del volum d'aplicació basat en el LWA, que consisteix en multiplicar aquest índex per un coeficient de 0.3, obtenint així el volum de brou òptim per a la vegetació. També es va arribar a la conclusió que es podria calcular el volum d'aplicació considerant només l'alçada de la vegetació.Resumen Uno de los aspectos más controvertidos en la aplicación de fitosanitarios en viña, es la determinación del volumen óptimo de tratamiento, dado el elevado número de factores que intervienen. Para ayudar al agricultor existen herramientas como el software Dosaviña que tiene en cuenta todos los factores que afectan a esta decisión y calcula un volumen de aplicación acorde a la vegetación a tratar. El objetivo principal de este proyecto es cambiar el método de cálculo actual del programa, basado en el volumen de vegetación o Tree Row Volume (TRV), por uno basado en la superficie de vegetación o Leaf Wall Area (LWA), dada la actual tendencia europea. Para ello se analizaron una serie de datos de ensayos de campo realizados en los últimos 20 años (1995-2015) y se realizaron unos ensayos de campo con el objetivo de establecer un método de cálculo fiable basado el LWA. Finalmente se consiguió establecer un método de cálculo fiable, para la mayoría de vegetaciones, del volumen de aplicación basado en el LWA, que consiste en multiplicar este índice por un coeficiente de 0.3, obteniendo así el volumen de caldo óptimo para la vegetación. También se llegó a la conclusión de que se podría calcular el volumen de aplicación considerando solo la altura de la vegetación
Simply Sweets: Business Plan
Simply Sweets is a start-up bakery located in west Michigan. Our commitment to excellence in the craft and artistry of baking enables us to deliver high quality products that look superb, delight the customer and make celebrations a moment to cherish. We have committed ourselves to being a green, sustainable business that uses local products and aims for zero waste.
Our products will exceed local stores and franchise competitors. Our products will posses that certain something that others do not have. Simply Sweets aims to offer its products at a competitive price to the middle-class market in the area.
Company Mission Statement
Revive and preserve the elegance and sensation of age old baking and cake decorating with culinary techniques to achieve the height of quality and excellence in the cake and pastry industry. Our products range from high-end elegance to classic and simple. If you dare to dream it we will create it.
Management Strategies
Simply Sweets will maintain a focus on quality products with bottom-line growth through cost reduction and optimal performance. We also stay up-to-date on technology and innovation to make sure employees have extensive training to perform proper technique and equipment operation. As a team, input will be collected analyzed and put into practice. Weekly team meetings will motivate and forecast growth and prevent potential difficulties.
Funding Resources
Simply Sweets will raise 350,000 capital.
Funding Allocation
Our current financial assumptions indicate that Simply Sweets will need to raise $450,000 in start-up capital. Detailed information for allocation of funds can be found in “Funding Request” section
Identification and Characterization of Sterol Acyltransferases Responsible for Steryl Ester Biosynthesis in Tomato
Steryl esters (SEs) serve as a storage pool of sterols that helps to maintain proper levels of free sterols (FSs) in cell membranes throughout plant growth and development, and participates in the recycling of FSs and fatty acids released from cell membranes in aging tissues. SEs are synthesized by sterol acyltransferases, a family of enzymes that catalyze the transfer of fatty acil groups to the hydroxyl group at C-3 position of the sterol backbone. Sterol acyltransferases are categorized into acyl-CoA:sterol acyltransferases (ASAT) and phospholipid:sterol acyltransferases (PSAT) depending on whether the fatty acyl donor substrate is a long-chain acyl-CoA or a phospolipid. Until now, only Arabidopsis ASAT and PSAT enzymes (AtASAT1 and AtPSAT1) have been cloned and characterized in plants. Here we report the identification, cloning, and functional characterization of the tomato (Solanum lycopersicum cv. Micro-Tom) orthologs. SlPSAT1 and SlASAT1 were able to restore SE to wild type levels in the Arabidopsis psat1-2 and asat1-1 knock-out mutants, respectively. Expression of SlPSAT1 in the psat1-2 background also prevented the toxicity caused by an external supply of mevalonate and the early senescence phenotype observed in detached leaves of this mutant, whereas expression of SlASAT1 in the asat1-1 mutant revealed a clear substrate preference of the tomato enzyme for the sterol precursors cycloartenol and 24-methylene cycloartanol. Subcellular localization studies using fluorescently tagged SlPSAT1 and SlASAT1 proteins revealed that SlPSAT1 localize in cytoplasmic lipid droplets (LDs) while, in contrast to the endoplasmic reticulum (ER) localization of AtASAT1, SlASAT1 resides in the plasma membrane (PM). The possibility that PM-localized SlASAT1 may act catalytically in trans on their sterol substrates, which are presumably embedded in the ER membrane, is discussed. The widespread expression of SlPSAT1 and SlASAT1 genes in different tomato organs together with their moderate transcriptional response to several stresses suggests a dual role of SlPSAT1 and SlASAT1 in tomato plant and fruit development and the adaptive responses to stress. Overall, this study contributes to enlarge the current knowledge on plant sterol acyltransferases and set the basis for further studies aimed at understanding the role of SE metabolism in tomato plant growth and development
Identification and characterization of sterol acyltransferases responsible for steryl ester biosynthesis in tomato
Steryl esters (SEs) serve as a storage pool of sterols that helps to maintain proper levels of free sterols (FSs) in cell membranes throughout plant growth and development, and participates in the recycling of FSs and fatty acids released from cell membranes in aging tissues. SEs are synthesized by sterol acyltransferases, a family of enzymes that catalyze the transfer of fatty acil groups to the hydroxyl group at C-3 position of the sterol backbone. Sterol acyltransferases are categorized into acyl-CoA:sterol acyltransferases (ASAT) and phospholipid:sterol acyltransferases (PSAT) depending on whether the fatty acyl donor substrate is a long-chain acyl-CoA or a phospolipid. Until now, only Arabidopsis ASAT and PSAT enzymes (AtASAT1 and AtPSAT1) have been cloned and characterized in plants. Here we report the identification, cloning, and functional characterization of the tomato (Solanum lycopersicum cv. Micro-Tom) orthologs. SlPSAT1 and SlASAT1 were able to restore SE to wild type levels in the Arabidopsis psat1-2 and asat1-1 knock-out mutants, respectively. Expression of SlPSAT1 in the psat1-2 background also prevented the toxicity caused by an external supply of mevalonate and the early senescence phenotype observed in detached leaves of this mutant, whereas expression of SlASAT1 in the asat1-1 mutant revealed a clear substrate preference of the tomato enzyme for the sterol precursors cycloartenol and 24-methylene cycloartanol. Subcellular localization studies using fluorescently tagged SlPSAT1 and SlASAT1 proteins revealed that SlPSAT1 localize in cytoplasmic lipid droplets (LDs) while, in contrast to the endoplasmic reticulum (ER) localization of AtASAT1, SlASAT1 resides in the plasma membrane (PM). The possibility that PM-localized SlASAT1 may act catalytically in trans on their sterol substrates, which are presumably embedded in the ER membrane, is discussed. The widespread expression of SlPSAT1 and SlASAT1 genes in different tomato organs together with their moderate transcriptional response to several stresses suggests a dual role of SlPSAT1 and SlASAT1 in tomato plant and fruit development and the adaptive responses to stress. Overall, this study contributes to enlarge the current knowledge on plant sterol acyltransferases and set the basis for further studies aimed at understanding the role of SE metabolism in tomato plant growth and development
Table_3_Identification and Characterization of Sterol Acyltransferases Responsible for Steryl Ester Biosynthesis in Tomato.PDF
<p>Steryl esters (SEs) serve as a storage pool of sterols that helps to maintain proper levels of free sterols (FSs) in cell membranes throughout plant growth and development, and participates in the recycling of FSs and fatty acids released from cell membranes in aging tissues. SEs are synthesized by sterol acyltransferases, a family of enzymes that catalyze the transfer of fatty acil groups to the hydroxyl group at C-3 position of the sterol backbone. Sterol acyltransferases are categorized into acyl-CoA:sterol acyltransferases (ASAT) and phospholipid:sterol acyltransferases (PSAT) depending on whether the fatty acyl donor substrate is a long-chain acyl-CoA or a phospolipid. Until now, only Arabidopsis ASAT and PSAT enzymes (AtASAT1 and AtPSAT1) have been cloned and characterized in plants. Here we report the identification, cloning, and functional characterization of the tomato (Solanum lycopersicum cv. Micro-Tom) orthologs. SlPSAT1 and SlASAT1 were able to restore SE to wild type levels in the Arabidopsis psat1-2 and asat1-1 knock-out mutants, respectively. Expression of SlPSAT1 in the psat1-2 background also prevented the toxicity caused by an external supply of mevalonate and the early senescence phenotype observed in detached leaves of this mutant, whereas expression of SlASAT1 in the asat1-1 mutant revealed a clear substrate preference of the tomato enzyme for the sterol precursors cycloartenol and 24-methylene cycloartanol. Subcellular localization studies using fluorescently tagged SlPSAT1 and SlASAT1 proteins revealed that SlPSAT1 localize in cytoplasmic lipid droplets (LDs) while, in contrast to the endoplasmic reticulum (ER) localization of AtASAT1, SlASAT1 resides in the plasma membrane (PM). The possibility that PM-localized SlASAT1 may act catalytically in trans on their sterol substrates, which are presumably embedded in the ER membrane, is discussed. The widespread expression of SlPSAT1 and SlASAT1 genes in different tomato organs together with their moderate transcriptional response to several stresses suggests a dual role of SlPSAT1 and SlASAT1 in tomato plant and fruit development and the adaptive responses to stress. Overall, this study contributes to enlarge the current knowledge on plant sterol acyltransferases and set the basis for further studies aimed at understanding the role of SE metabolism in tomato plant growth and development.</p
Identification and characterization of sterol acyltransferases responsible for steryl ester biosynthesis in tomato
Steryl esters (SEs) serve as a storage pool of sterols that helps to maintain proper levels of free sterols (FSs) in cell membranes throughout plant growth and development, and participates in the recycling of FSs and fatty acids released from cell membranes in aging tissues. SEs are synthesized by sterol acyltransferases, a family of enzymes that catalyze the transfer of fatty acil groups to the hydroxyl group at C-3 position of the sterol backbone. Sterol acyltransferases are categorized into acyl-CoA:sterol acyltransferases (ASAT) and phospholipid:sterol acyltransferases (PSAT) depending on whether the fatty acyl donor substrate is a long-chain acyl-CoA or a phospolipid. Until now, only Arabidopsis ASAT and PSAT enzymes (AtASAT1 and AtPSAT1) have been cloned and characterized in plants. Here we report the identification, cloning, and functional characterization of the tomato (Solanum lycopersicum cv. Micro-Tom) orthologs. SlPSAT1 and SlASAT1 were able to restore SE to wild type levels in the Arabidopsis psat1-2 and asat1-1 knock-out mutants, respectively. Expression of SlPSAT1 in the psat1-2 background also prevented the toxicity caused by an external supply of mevalonate and the early senescence phenotype observed in detached leaves of this mutant, whereas expression of SlASAT1 in the asat1-1 mutant revealed a clear substrate preference of the tomato enzyme for the sterol precursors cycloartenol and 24-methylene cycloartanol. Subcellular localization studies using fluorescently tagged SlPSAT1 and SlASAT1 proteins revealed that SlPSAT1 localize in cytoplasmic lipid droplets (LDs) while, in contrast to the endoplasmic reticulum (ER) localization of AtASAT1, SlASAT1 resides in the plasma membrane (PM). The possibility that PM-localized SlASAT1 may act catalytically in trans on their sterol substrates, which are presumably embedded in the ER membrane, is discussed. The widespread expression of SlPSAT1 and SlASAT1 genes in different tomato organs together with their moderate transcriptional response to several stresses suggests a dual role of SlPSAT1 and SlASAT1 in tomato plant and fruit development and the adaptive responses to stress. Overall, this study contributes to enlarge the current knowledge on plant sterol acyltransferases and set the basis for further studies aimed at understanding the role of SE metabolism in tomato plant growth and development
Image_2_Identification and Characterization of Sterol Acyltransferases Responsible for Steryl Ester Biosynthesis in Tomato.JPEG
<p>Steryl esters (SEs) serve as a storage pool of sterols that helps to maintain proper levels of free sterols (FSs) in cell membranes throughout plant growth and development, and participates in the recycling of FSs and fatty acids released from cell membranes in aging tissues. SEs are synthesized by sterol acyltransferases, a family of enzymes that catalyze the transfer of fatty acil groups to the hydroxyl group at C-3 position of the sterol backbone. Sterol acyltransferases are categorized into acyl-CoA:sterol acyltransferases (ASAT) and phospholipid:sterol acyltransferases (PSAT) depending on whether the fatty acyl donor substrate is a long-chain acyl-CoA or a phospolipid. Until now, only Arabidopsis ASAT and PSAT enzymes (AtASAT1 and AtPSAT1) have been cloned and characterized in plants. Here we report the identification, cloning, and functional characterization of the tomato (Solanum lycopersicum cv. Micro-Tom) orthologs. SlPSAT1 and SlASAT1 were able to restore SE to wild type levels in the Arabidopsis psat1-2 and asat1-1 knock-out mutants, respectively. Expression of SlPSAT1 in the psat1-2 background also prevented the toxicity caused by an external supply of mevalonate and the early senescence phenotype observed in detached leaves of this mutant, whereas expression of SlASAT1 in the asat1-1 mutant revealed a clear substrate preference of the tomato enzyme for the sterol precursors cycloartenol and 24-methylene cycloartanol. Subcellular localization studies using fluorescently tagged SlPSAT1 and SlASAT1 proteins revealed that SlPSAT1 localize in cytoplasmic lipid droplets (LDs) while, in contrast to the endoplasmic reticulum (ER) localization of AtASAT1, SlASAT1 resides in the plasma membrane (PM). The possibility that PM-localized SlASAT1 may act catalytically in trans on their sterol substrates, which are presumably embedded in the ER membrane, is discussed. The widespread expression of SlPSAT1 and SlASAT1 genes in different tomato organs together with their moderate transcriptional response to several stresses suggests a dual role of SlPSAT1 and SlASAT1 in tomato plant and fruit development and the adaptive responses to stress. Overall, this study contributes to enlarge the current knowledge on plant sterol acyltransferases and set the basis for further studies aimed at understanding the role of SE metabolism in tomato plant growth and development.</p
Image_1_Identification and Characterization of Sterol Acyltransferases Responsible for Steryl Ester Biosynthesis in Tomato.JPEG
<p>Steryl esters (SEs) serve as a storage pool of sterols that helps to maintain proper levels of free sterols (FSs) in cell membranes throughout plant growth and development, and participates in the recycling of FSs and fatty acids released from cell membranes in aging tissues. SEs are synthesized by sterol acyltransferases, a family of enzymes that catalyze the transfer of fatty acil groups to the hydroxyl group at C-3 position of the sterol backbone. Sterol acyltransferases are categorized into acyl-CoA:sterol acyltransferases (ASAT) and phospholipid:sterol acyltransferases (PSAT) depending on whether the fatty acyl donor substrate is a long-chain acyl-CoA or a phospolipid. Until now, only Arabidopsis ASAT and PSAT enzymes (AtASAT1 and AtPSAT1) have been cloned and characterized in plants. Here we report the identification, cloning, and functional characterization of the tomato (Solanum lycopersicum cv. Micro-Tom) orthologs. SlPSAT1 and SlASAT1 were able to restore SE to wild type levels in the Arabidopsis psat1-2 and asat1-1 knock-out mutants, respectively. Expression of SlPSAT1 in the psat1-2 background also prevented the toxicity caused by an external supply of mevalonate and the early senescence phenotype observed in detached leaves of this mutant, whereas expression of SlASAT1 in the asat1-1 mutant revealed a clear substrate preference of the tomato enzyme for the sterol precursors cycloartenol and 24-methylene cycloartanol. Subcellular localization studies using fluorescently tagged SlPSAT1 and SlASAT1 proteins revealed that SlPSAT1 localize in cytoplasmic lipid droplets (LDs) while, in contrast to the endoplasmic reticulum (ER) localization of AtASAT1, SlASAT1 resides in the plasma membrane (PM). The possibility that PM-localized SlASAT1 may act catalytically in trans on their sterol substrates, which are presumably embedded in the ER membrane, is discussed. The widespread expression of SlPSAT1 and SlASAT1 genes in different tomato organs together with their moderate transcriptional response to several stresses suggests a dual role of SlPSAT1 and SlASAT1 in tomato plant and fruit development and the adaptive responses to stress. Overall, this study contributes to enlarge the current knowledge on plant sterol acyltransferases and set the basis for further studies aimed at understanding the role of SE metabolism in tomato plant growth and development.</p