25 research outputs found

    A full greenhouse gases budget of africa: Synthesis, uncertainties, and vulnerabilities

    Get PDF
    This paper, developed under the framework of the RECCAP initiative, aims at providing improved estimates of the carbon and GHG (CO2, CH4 and N2O) balance of continental Africa. The various components and processes of the African carbon and GHG budget are considered, existing data reviewed, and new data from different methodologies (inventories, ecosystem flux measurements, models, and atmospheric inversions) presented. Uncertainties are quantified and current gaps and weaknesses in knowledge and monitoring systems described in order to guide future requirements. The majority of results agree that Africa is a small sink of carbon on an annual scale, with an average value of −0.61 ± 0.58 Pg C yr−1. Nevertheless, the emissions of CH4 and N2O may turn Africa into a net source of radiative forcing in CO2 equivalent terms. At sub-regional level, there is significant spatial variability in both sources and sinks, due to the diversity of biomes represented and differences in the degree of anthropic impacts. Southern Africa is the main source region; while central Africa, with its evergreen tropical forests, is the main sink. Emissions from land-use change in Africa are significant (around 0.32 ± 0.05 Pg C yr−1), even higher than the fossil fuel emissions: this is a unique feature among all the continents. There could be significant carbon losses from forest land even without deforestation, resulting from the impact of selective logging. Fires play a significant role in the African carbon cycle, with 1.03 ± 0.22 Pg C yr−1 of carbon emissions, and 90% originating in savannas and dry woodlands. A large portion of the wild fire emissions are compensated by CO2 uptake during the growing season, but an uncertain fraction of the emission from wood harvested for domestic use is not. Most of these fluxes have large interannual variability, on the order of ±0.5 Pg C yr−1 in standard deviation, accounting for around 25% of the year-to-year variation in the global carbon budget. Despite the high uncertainty, the estimates provided in this paper show the important role that Africa plays in the global carbon cycle, both in terms of absolute contribution, and as a key source of interannual variability

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers

    Genetic Analyses Benefit From Using Less Heterogeneous Phenotypes: An Illustration With the Hospital Anxiety and Depression Scale (HADS)

    No full text
    Phenotypic heterogeneity of depression has been cited as one of the causes of the limited success to detect genetic variants in genome-wide studies. The 7-item Hospital Anxiety and Depression Scale (HADS-D) was developed to detect depression in individuals with physical health problems. An initial psychometric analysis showed that a short version ("HADS-4") is less heterogeneous and hence more reliable than the full scale, and correlates equally strong with a DSM-oriented depression scale. We compared the HADS-D and the HADS-4 to assess the benefits of using less heterogeneous phenotype measures in genetic analyses. We compared HADS-D and HADS-4 in three separate analyses: (1) twin- and family-based heritability estimation, (2) SNP-based heritability estimation using the software GCTA, and (3) a genome-wide association study (GWAS). The twin study resulted in heritability estimates between 18% and 25%, with additive genetic variance being the largest component. There was also evidence for assortative mating and a dominance component of genetic variance, with HADS-4 having slightly lower estimates of assortment. Importantly, when estimating heritability from SNPs, the HADS-D did not show a significant genetic variance component, while for the HADS-4, a statistically significant amount of heritability was estimated. Moreover, the HADS-4 had substantially more SNPs with small P-values in the GWAS analysis than did the HADS-D. Our results underline the benefits of using more homogeneous phenotypes in psychiatric genetic analyses. Homogeneity can be increased by focusing on core symptoms of disorders, thus reducing the noise in aggregate phenotypes caused by substantially different symptom profiles

    New Basal Synapsid Supports Laurasian Origin for Therapsids

    No full text
    The distant evolutionary ancestry of mammals is documented by a rich therapsid fossil record. While sphenacodontid synapsids are considered the sister−group of therapsids, the place of origin of therapsids is an enigma, largely because of a long standing morphological and temporal gap (Olson’s Gap) in their fossil record. We describe a new large predatory synapsid, Raranimus dashankouensis gen. et sp. nov., from the Middle Permian of Dashankou in China which has a unique combination of therapsid and sphenacodontid features. This specimen is of great significance asit is a basal therapsid which is the sister taxon to all other therapsids. The fact that it was found in association with Early Permian tetrapods (Anakamacops and Belebey) suggests that it is the oldest therapsid and provides the first evidence of therapsid−bearing rocks which cover Olson’s Gap. It further supports that therapsids may have had a Laurasian rather than Gondwanan origin

    Paramagnetic nanoparticles to track and quantify in vivo immune human therapeutic cells

    No full text
    International audienceThis study aims to investigate gadolinium-based nanoparticles (Gd-HNP) for in vitro labeling of human plasmacytoid dendritic cells (HuPDC) to allow for in vivo tracking and HuPDC quantifying using magnetic resonance imaging (MRI) following parenteral injection. Human plasmacytoid DC were labeled (LabHuPDC) with fluorescent Gd-HNP (Gd-FITC-HNP) and injected via intraperitoneal and intravenous routes in 4-5 NOD-SCID β2m(-/-)mice (treated mice = TM). Control mice (CM) were similarly injected with unlabeled HuPDC. In vivo 7 T MRI was performed 24 h later and all spleens were removed in order to measure Gd and fluorescence contents and identify HuPDC. Gd-FITC-HNP efficiently labeled HuPDC (0.05 to 0.1 pg per cell), without altering viability and activation properties. The magnetic resonance (MR) signal was exclusively due to HuPDC. The normalized MR splenic intensity for TM was significantly higher than for CM (p < 0.024), and highly correlated with the spleen Gd content (r = 0.97), and the number of HuPDC found in the spleen (r = 0.94). Gd-FITC-HNP allowed for in vivo tracking and HuPDC quantifying by means of MRI following parenteral injection, with very high sensitivity (<3000 cells per mm(3)). The safety of these new nanoparticle types must be confirmed via extensive toxicology tests including in vivo stability and biodistribution studies
    corecore