212 research outputs found

    Thermosonication applied to blueberry juice – impact on quality properties

    Get PDF
    Aim: The conventional heat treatment (HT) is still used by the food processing industry as a solution to inactivate pathogenic agents and to extend the shelf-life of juice products. However, pasteurization involves quality modifications of the final product by losing part of its nutritional value and properties. This factor is critical in industrial juice manufacture, whose freshness is essential. This study aims to evaluate if thermosonication (TS) can be considered a potential alternative to the pasteurization of blueberry juice. Method: Juices were prepared by defrosting the frozen blueberries and then using a cold centrifugal juicer. Freshly prepared juices were thermosonicated with a sonicator probe (700 W, 20 kHz, 100% amplitude) at 45 and 55 °C for 25 and 1 min and using an ultrasonic bath (230 V, 35 kHz) at the same temperatures for 30 and 60 min. These processes were compared to the traditional pasteurization by the juice heat-treated at 75 °C for 1 min. The temperature/time binomials were chosen based on the 5-log10 L. innocua reduction. Physicochemical parameters, anthocyanins content, total phenolics, antioxidant activity, and enzyme activity were monitored before and after treatments.Results: The TS applied with the probe (TSP) had significant positive effects on blueberry juice, such as the increase of antioxidant activity (according to the ABTS scavenging method), the inactivation of enzymatic activity (a residual activity of about 25% and 1% was achieved for POD and PPO), and the decrease on the browning index. However, a significant reduction of phenolic compounds and anthocyanins was observed. HT had the most impact on juice colour parameters but was the most effective method in totally inactivating the POD enzyme. TS with ultrasonic bath (TSB) showed no significant differences in antioxidant activity and anthocyanins compared with the untreated juice. However, also juice colour was significantly changed. Conclusion: TSP and TSB effectively maintained or improved most blueberry juice quality characteristics compared with HT and untreated samples. Nevertheless, since TSB needs a higher treatment time for the 5log10 microbial inactivation, physicochemical parameters were more negatively affected. Therefore, thermosonication (especially TSP) seems a possible processing option to preserve blueberry juice quality.info:eu-repo/semantics/publishedVersio

    Editorial: Coralline algae: Past, present, and future perspectives

    Get PDF
    Following the success of the Frontiers in Marine Science Research Topic on “Coralline Algae: Globally Distributed Ecosystem Engineers,” the Research Topic on “Coralline Algae: Past, Present and Future Perspectives” was launched to extend the opportunity for publishing further knowledge about these diverse ecosystem engineers across a broader time scale. In this Research Topic, an additional nine original research articles have been published, strengthening our understanding of coralline algae past, present, and future, including their biology, physiology and ecology. From reconstructing coralline algal assemblages during the Paleocene/Eocene thermal maximum, to understanding current trophodynamics and benthic-pelagic coupling in rhodolith beds, to assessing the adaptability of coralline algae to future warming, the original research articles in this Research Topic cover a time frame of 55.6 million years and span across an Atlantic biogeographical range from Brazil to the high Arctic.info:eu-repo/semantics/publishedVersio

    Editorial: coralline algae: globally distributed ecosystem engineers

    Get PDF
    From the early days of phycology, coralline algae (CA) have been considered the most formidable and widely distributed algae (Woelkerling, 1988). They compose an abundant and highly diverse group, divided into geniculate (articulated) and non-geniculate species (crusts and rhodolith/maërl forms). CA are present in almost every coastal ecosystem around the world, from the intertidal to mesophotic zones (Johansen et al., 1981; Steneck, 1986; Foster, 2001). They are important ecosystem engineers that provide hard, three-dimensional substrates for a highly diverse fauna and flora (Nelson, 2009), building habitats like the globally distributed rhodolith (or maërl) beds (Foster, 2001), and the large algal bioconstructions that abound in the Mediterranean (coralligenous assemblages, intertidal rims; Ingrosso et al., 2018). In addition, the CaCO3 precipitation within cell walls leads to a high fossilization potential of CA, which are considered the best fossil record among macrobenthic autotrophs since they first appeared in the Lower Cretaceous (Aguirre et al., 2000). It also makes CA major carbonate producers (van der Heijden and Kamenos, 2015), which, considering their abundance and wide distribution, gives them an important role in oceanic carbon cycling and reef building (Adey, 1998; Chisholm, 2003; Martin et al., 2006; Perry et al., 2008) and makes them a group of significant economic interest (Coletti and Frixa, 2017). Like many other marine ecosystems, CA habitats will be negatively affected by future climate change, e.g., due to reduced CA calcification/growth (Martin andHall-Spencer, 2017; Cornwall et al., 2019) that may eventually lead to ecosystem degradation and reduction of habitat complexity and biodiversity.FCT: UID/Multi/04326/2019; European Union (EU): 844703 and 2018-W-MS-35; FINEP/Rede CLIMA 01.13.0353-00; National Council for Scientific and Technological Development (CNPq) 426215/2016; National Science Foundation Ocean Sciences International Postdoctoral Research Fellow program 1521610 nvironmental Protection Agency in Ireland .info:eu-repo/semantics/publishedVersio

    Calcification in free‑living coralline algae is strongly influenced by morphology: Implications for susceptibility to ocean acidification

    Get PDF
    Rhodolith beds built by free-living coralline algae are important ecosystems for marine biodiversity and carbonate production. Yet, our mechanistic understanding regarding rhodolith physiology and its drivers is still limited. Using three rhodolith species with different branching morphologies, we investigated the role of morphology in species’ physiology and the implications for their susceptibility to ocean acidification (OA). For this, we determined the effects of thallus topography on diffusive boundary layer (DBL) thickness, the associated microscale oxygen and pH dynamics and their relationship with species’ metabolic and light and dark calcification rates, as well as species’ responses to short-term OA exposure. Our results show that rhodolith branching creates low-flow microenvironments that exhibit increasing DBL thickness with increasing branch length. This, together with species’ metabolic rates, determined the light-dependent pH dynamics at the algal surface, which in turn dictated species’ calcification rates. While these differences did not translate in species-specific responses to short-term OA exposure, the differences in the magnitude of diurnal pH fluctuations (~ 0.1–1.2 pH units) between species suggest potential differences in phenotypic plasticity to OA that may result in different susceptibilities to long-term OA exposure, supporting the general view that species’ ecomechanical characteristics must be considered for predicting OA responses

    Global sourcing of low-inorganic arsenic rice grain

    Get PDF
    Arsenic in rice grain is dominated by two species: the carcinogen inorganic arsenic (the sum of arsenate and arsenite) and dimethylarsinic acid (DMA). Rice is the dominant source of inorganic arsenic into the human diet. As such, there is a need to identify sources of low-inorganic arsenic rice globally. Here we surveyed polished (white) rice across representative regions of rice production globally for arsenic speciation. In total 1180 samples were analysed from 29 distinct sampling zones, across 6 continents. For inorganic arsenic the global x ~ x~ was 66 μg/kg, and for DMA this figure was 21 μg/kg. DMA was more variable, ranging from < 2 to 690 μg/kg, while inorganic arsenic ranged from < 2 to 399 μg/kg. It was found that inorganic arsenic dominated when grain sum of species was < 100 μg/kg, with DMA dominating at higher concentrations. There was considerable regional variance in grain arsenic speciation, particularly in DMA where temperate production regions had higher concentrations. Inorganic arsenic concentrations were relatively consistent across temperate, subtropical and northern hemisphere tropical regions. It was only in southern hemisphere tropical regions, in the eastern hemisphere that low-grain inorganic arsenic is found, namely East Africa (x ~ x~  < 10 μg/kg) and the Southern Indonesian islands (x ~ x~  < 20 μg/kg). Southern hemisphere South American rice was universally high in inorganic arsenic, the reason for which needs further exploration

    Viral Mimicry of Cdc2/Cyclin-Dependent Kinase 1 Mediates Disruption of Nuclear Lamina during Human Cytomegalovirus Nuclear Egress

    Get PDF
    The nuclear lamina is a major obstacle encountered by herpesvirus nucleocapsids in their passage from the nucleus to the cytoplasm (nuclear egress). We found that the human cytomegalovirus (HCMV)-encoded protein kinase UL97, which is required for efficient nuclear egress, phosphorylates the nuclear lamina component lamin A/C in vitro on sites targeted by Cdc2/cyclin-dependent kinase 1, the enzyme that is responsible for breaking down the nuclear lamina during mitosis. Quantitative mass spectrometry analyses, comparing lamin A/C isolated from cells infected with viruses either expressing or lacking UL97 activity, revealed UL97-dependent phosphorylation of lamin A/C on the serine at residue 22 (Ser22). Transient treatment of HCMV-infected cells with maribavir, an inhibitor of UL97 kinase activity, reduced lamin A/C phosphorylation by approximately 50%, consistent with UL97 directly phosphorylating lamin A/C during HCMV replication. Phosphorylation of lamin A/C during viral replication was accompanied by changes in the shape of the nucleus, as well as thinning, invaginations, and discrete breaks in the nuclear lamina, all of which required UL97 activity. As Ser22 is a phosphorylation site of particularly strong relevance for lamin A/C disassembly, our data support a model wherein viral mimicry of a mitotic host cell kinase activity promotes nuclear egress while accommodating viral arrest of the cell cycle

    The ELIXIR Human Copy Number Variations Community:building bioinformatics infrastructure for research

    Get PDF
    Copy number variations (CNVs) are major causative contributors both in the genesis of genetic diseases and human neoplasias. While 'High-Throughput' sequencing technologies are increasingly becoming the primary choice for genomic screening analysis, their ability to efficiently detect CNVs is still heterogeneous and remains to be developed. The aim of this white paper is to provide a guiding framework for the future contributions of ELIXIR's recently established h uman CNV Community, with implications beyond human disease diagnostics and population genomics. This white paper is the direct result of a strategy meeting that took place in September 2018 in Hinxton (UK) and involved representatives of 11 ELIXIR Nodes. The meeting led to the definition of priority objectives and tasks, to address a wide range of CNV-related challenges ranging from detection and interpretation to sharing and training. Here, we provide suggestions on how to align these tasks within the ELIXIR Platforms strategy, and on how to frame the activities of this new ELIXIR Community in the international context

    A systematic review of the effect of retention methods in population-based cohort studies

    Get PDF
    Background: Longitudinal studies are of aetiological and public health relevance but can be undermined by attrition. The aim of this paper was to identify effective retention strategies to increase participation in population-based cohort studies. Methods: Systematic review of the literature to identify prospective population-based cohort studies with health outcomes in which retention strategies had been evaluated. Results: Twenty-eight studies published up to January 2011 were included. Eleven of which were randomized controlled trials of retention strategies (RCT). Fifty-seven percent of the studies were postal, 21% in-person, 14% telephone and 7% had mixed data collection methods. A total of 45 different retention strategies were used, categorised as 1) incentives, 2) reminder methods, repeat visits or repeat questionnaires, alternative modes of data collection or 3) other methods. Incentives were associated with an increase in retention rates, which improved with greater incentive value. Whether cash was the most effective incentive was not clear from studies that compared cash and gifts of similar value. The average increase in retention rate was 12% for reminder letters, 5% for reminder calls and 12% for repeat questionnaires. Ten studies used alternative data collection methods, mainly as a last resort. All postal studies offered telephone interviews to non-responders, which increased retention rates by 3%. Studies that used face-to-face interviews increased their retention rates by 24% by offering alternative locations and modes of data collection. Conclusions: Incentives boosted retention rates in prospective cohort studies. Other methods appeared to have a beneficial effect but there was a general lack of a systematic approach to their evaluation

    Twenty-eight genetic loci associated with ST-T-wave amplitudes of the electrocardiogram

    Get PDF
    The ST-segment and adjacent T-wave (ST-T wave) amplitudes of the electrocardiogram are quantitative characteristics of cardiac repolarization. Repolarization abnormalities have been linked to ventricular arrhythmias and sudden cardiac death. We performed the first genome-wide association meta-analysis of ST-T-wave amplitudes in up to 37 977 individuals identifying 71 robust genotype-phenotype associations clustered within 28 independent loci. Fifty-four genes were prioritized as candidates underlying the phenotypes, including genes with established roles in the cardiac repolarization phase (SCN5A/SCN10A, KCND3, KCNB1, NOS1AP and HEY2) and others with as yet undefined cardiac function. These associations may provide insights in the spatiotemporal contribution of genetic variation influencing cardiac repolarization and provide novel leads for future functional follow-up
    corecore