20 research outputs found

    The effects of cryogenically preserved sperm on the fertilization, embryonic development and hatching success of lumpfish C. lumpus

    Get PDF
    Under embargo until: 2023-09-10Lumpfish (C. lumpus) are used as cleaner fish in the Atlantic salmon (Salmo salar) farming industry to remove parasitic sea lice. At present, wild lumpfish broodstock are used which puts strain on wild populations. By successfully cryopreserving lumpfish sperm, the number of wild males required will be reduced and it enables the long-term storage of sperm for use in breeding programmes. The present study compared the use of fresh sperm and sperm which was cryogenically frozen for 24 h to test whether it is a viable method of preservation. The fresh and frozen sperm from 5 males was used (in equal volumes) to fertilize eggs pooled from 5 females and the difference between fertilization success, percentage of eggs which reached the eyed stage, and the hatching success was measured. A group of 100 hatched larvae were on-grown for two weeks to test whether there was a difference weight between treatment groups. The results of the trial showed that fresh sperm produced a significantly higher percentage of fertilized eggs (fresh 92.6 ± 0.8%, frozen 77.9 ± 1.8%, mean ± SEM), a higher percentage of eggs surviving to the eyed stage (fresh 93.9 ± 0.5% and frozen 80.8 ± 1.4%) and had a more successful hatch rate (fresh 72.3 ± 6.6% and frozen 63.6 ± 5.0%). There was no difference in mean weight (± SEM) of the two-week old larvae between treatments (fresh 0.63 g ± 0.024, frozen 0.59 g ± 0.028). In conclusion, this study showed that the same volume of cryogenically preserved lumpfish sperm produced fewer viable lumpfish larvae than fresh sperm. Despite this difference, the use of cryopreserved sperm did produce relatively high results at each stage of testing.acceptedVersio

    Towards better lumpfish: Changes in size variation, cataract development, behaviour and sea lice grazing through selective breeding

    Get PDF
    The aim of this study was to evaluate whether sea lice grazing efficiency, behaviour, size variation and cataract development can be improved through selective breeding of lumpfish. A series of studies was conducted over a four-year period where distinctive lumpfish families were established initially from wild caught mature fish and latterly from established breeding lines. Four subsequent trials (called: Phase I-IV) with ten families of lumpfish (N = 480) with a mean (± SD) weight of 46.4 ± 9.4 g (Phase I), 54.8 ± 9.2 g (Phase II), 42.0 ± 7.4 g (Phase III) and 31.3 ± 2.4 g (Phase IV) were distributed among ten sea cages (5 × 5 × 5 m) during autumn 2018 to spring 2022, each stocked with 400–404 Atlantic salmon with an average initial mean (± SD) of 387 ± 9 g (Phase I), 621 ± 15 g (Phase II), 280 ± 16 g (Phase III) and 480 ± 66 g (Phase IV). All the ten cages were stocked with 48 lumpfish (12% stocking density). In all phases there was a large inter-family variation of lice grazing of lumpfish of both L. salmonis and C. elongatus. When sea lice grazing was scaled in relation to sea lice infestation numbers on the salmon the highest sea lice grazing activity was found in Phase IV and in particular in families sired from farmed parents. There was a general trend for mean start weights and standard deviations to decrease as the phases continued. A significant increase was found in frequency of behaviour associated with feeding on natural food sources and grazing sea lice from salmon during each subsequent phase. The increase in incidence of cataracts from start to end of each trial phase was significantly reduced from Phase I (16%) to Phase IV (2%). Overall, present findings showed that sea lice grazing of both L. salmonis and C. elongatus, size variation, cataract prevalence and behaviour types can be enhanced through selection and targeted breeding programs.publishedVersio

    Genomic Signatures of Local Adaptation under High Gene Flow in Lumpfish—Implications for Broodstock Provenance Sourcing and Larval Production

    Get PDF
    Aquaculture of the lumpfish (Cyclopterus lumpus L.) has become a large, lucrative industry owing to the escalating demand for “cleaner fish” to minimise sea lice infestations in Atlantic salmon mariculture farms. We used over 10K genome-wide single nucleotide polymorphisms (SNPs) to investigate the spatial patterns of genomic variation in the lumpfish along the coast of Norway and across the North Atlantic. Moreover, we applied three genome scans for outliers and two genotype–environment association tests to assess the signatures and patterns of local adaptation under extensive gene flow. With our ‘global’ sampling regime, we found two major genetic groups of lumpfish, i.e., the western and eastern Atlantic. Regionally in Norway, we found marginal evidence of population structure, where the population genomic analysis revealed a small portion of individuals with a different genetic ancestry. Nevertheless, we found strong support for local adaption under high gene flow in the Norwegian lumpfish and identified over 380 high-confidence environment-associated loci linked to gene sets with a key role in biological processes associated with environmental pressures and embryonic development. Our results bridge population genetic/genomics studies with seascape genomics studies and will facilitate genome-enabled monitoring of the genetic impacts of escapees and allow for genetic-informed broodstock selection and management in Norway.publishedVersio

    Quantification of grazing efficacy, growth and health score of different lumpfish (Cyclopterus lumpus L.) families: possible size and gender effects

    Get PDF
    Postponed access: the file will be available after 2022-09-12To investigate the possible family influence on sea lice grazing of lumpfish on Atlantic salmon, ten families of lumpfish (N = 480) with a mean (± SD) weight of 54.8 ± 9.2 g were distributed among ten sea cages (5 × 5 × 5 m) each stocked with 400 Atlantic salmon with a mean (± SD) weight of 621.4 ± 9.2 g. All the ten cages were stocked with 48 lumpfish (12% stocking density). The stocking of cages was such that each cage consisted of two random families where full- and paternal half-sib families were randomly allocated to the different cages. There were clear differences in sea lice grazing efficacy, growth and cataract prevalence between the ten families assessed in this study. Lumpfish from families 2, 6 and 10 had the lowest mean weights but showed comparable growth rates compared to the other families throughout the study and this may be as a direct result of genetic influence. In addition, fish from these families had a significantly higher incidence of lice grazing of both L. salmonis and C. elongatus compared to the other families. Using mixed linear model to analyse the data revealed significant family and paternal effect on sea lice grazing. There was a trend for a reduction in sea lice grazing with increased size within each family. The results indicated that it was the smallest size classes of lumpfish (40–140 g) which exhibited higher sea lice grazing potential compared to the larger size classes within families. There were no clear differences in the lice grazing potential between male and female lumpfish within and between families. Overall, present findings showed that sea lice grazing of both L. salmonis and C. elongatus can be enhanced using targeted family production and if this behaviour has a genetic basis it may further enhanced through selection and targeted breeding programs.acceptedVersio

    Numerical responses of saproxylic beetles to rapid increases in dead wood availability following geometrid moth outbreaks in sub-arctic mountain birch forest

    Get PDF
    -Saproxylic insects play an important part in decomposing dead wood in healthy forest ecosystems, but little is known about their role in the aftermath of large-scale forest mortality caused by pest insect outbreaks. We used window traps to study short-term changes in the abundance and community structure of saproxylic beetles following extensive mortality of mountain birch in sub-arctic northern Norway caused by an outbreak of geometrid moths. Three to five years after the outbreak, the proportion of obligate saproxylic individuals in the beetle community was roughly 10% higher in forest damaged by the outbreak than in undamaged forest. This was mainly due to two early-successional saproxylic beetle species. Facultative saproxylic beetles showed no consistent differences between damaged and undamaged forest. These findings would suggest a weak numerical response of the saproxylic beetle community to the dead wood left by the outbreak. We suggest that species-specific preferences for certain wood decay stages may limit the number of saproxylic species that respond numerically to an outbreak at a particular time, and that increases in responding species may be constrained by limitations to the amount of dead wood that can be exploited within a given timeframe (i.e. satiation effects). Low diversity of beetle species or slow development of larvae in our cold sub-arctic study region may also limit numerical responses. Our study suggests that saproxylic beetles, owing to weak numerical responses, may so far have played a minor role in decomposing the vast quantities of dead wood left by the moth outbreak

    How rapidly do invasive birch forest geometrids recruit larval parasitoids? Insights from comparison with a sympatric native geometrid

    Get PDF
    Two related issues in studies of biological invasions are how quickly the enemy complexes of invasive species become as species-rich and efficient as those of native species and how important enemy release is for the establishment and spread of invaders. We addressed these issues for the geometrid moths Operophtera brumata and Agriopis aurantiaria, who invaded the coastal mountain birch forest of northern Norway by range expansion approximately a century and 15 years ago, respectively. This was done by comparing larval parasitoid species richness and prevalence among the invaders and the native geometrid Epirrita autumnata. We found that E. autumnata and O. brumata both hosted seven parasitoid species groups, whereas A. aurantiaria hosted only one. Several parasitoid groups were shared between two or more of the geometrids. Total larval parasitism rates were similar in all three geometrid species, and comparison with published studies on larval parasitism in Western Europe suggested that O. brumata and A. aurantiaria do not suffer lower parasitism rates in our study region than in their native ranges. Our results indicate that accumulation of larval parasitoids on invasive geometrids in coastal mountain birch forest may reach completion within a few decades to at least a century after the invasion, and that establishment and spread of such invaders is unlikely to be facilitated by release from larval parasitism. Our investigations also uncovered a high degree of spatiotemporal synchrony between the total larval parasitism rates of O. brumata and A. aurantiaria, suggesting that larval parasitism of different geometrid species in the study system is governed by some common external facto

    Ecosystem impacts of a range expanding forest defoliator at the Forest-Tundra Ecotone. Ecosystems

    No full text
    ABSTRACT Insect outbreaks in northern-boreal forests are expected to intensify owing to climate warming, but our understanding of direct and cascading impacts of insect outbreaks on forest ecosystem functioning is deficient. The duration and severity of outbreaks by geometrid moths in northern Fennoscandian mountain birch forests have been shown to be accentuated by a recent climatemediated range expansion, in particular of winter moth (Operophtera brumata). Here, we assess the effect of moth outbreak severity, quantified from satellite-based defoliation maps, on the state of understory vegetation and the abundance of key vertebrate herbivores in mountain birch forest in northern Norway. We show that the most recent moth outbreak caused a regional-scale state change to the understory vegetation, mainly due to a shift in dominance from the allelopathic and unpalatable dwarf-shrub Empetrum nigrum to the productive and palatable grass Avenella flexuosa. Both these central understory plant species responded significantly and nonlinearly to increasing outbreak severity. We further provide evidence that the effects of the outbreak on understory vegetation cascaded to cause strong but opposite impacts on the abundance of the two most common herbivore groups. Rodents increased with defoliation, largely mirroring the increase in A. flexuosa, whereas ungulate abundance instead showed a decreasing trend. Our analyses also suggest that the response of understory vegetation to defoliation may depend on the initial state of the forest, with poorer forest types potentially allowing stronger responses to defoliation
    corecore