18 research outputs found

    How to support clinical translation in neonatal lung research? Insights from multidisciplinary approaches to enhance our knowledge on normal human lung development in utero (single-nuclei RNA sequencing), provide proof of concept for gene therapy vir

    No full text
    Dans ce travail, nous rapportons 3 projets visant Ă  amĂ©liorer et soutenir la translation clinique en recherche sur le poumon nĂ©onatal.PremiĂšrement, nous dĂ©crivons l’utilisation du sĂ©quençage d'ARN sur noyaux uniques (single nuclei RNA sequencing ou snRNA-seq) pour Ă©tudier le dĂ©veloppement pulmonaire humain. Le snRNAseq sur 23,251 noyaux cellulaires isolĂ©s Ă  partir de neuf fƓtus humains (Ăąges gestationnels de 14 Ă  19 semaines de gestation) a permis de dĂ©crire neuf types cellulaires, incluant des populations cellulaires rares telles que les cellules pulmonaires neuroendocrines. Pour chaque type cellulaire, des gĂšnes marqueurs ont Ă©tĂ© identifiĂ©s et utilisĂ©s pour confirmer la rĂ©partition spatiale cellulaire au sein du tissu par hybridation in situ en fluorescence (FISH). Les analyses d’enrichissement et de trajectoires dĂ©veloppementales ont permis de dĂ©crire les modifications des voies molĂ©culaires et de signalisation au sein d’un mĂȘme type cellulaire en fonction de l'Ăąge gestationnel. L’analyse des interactions ligands-rĂ©cepteurs a mis en Ă©vidence les voies de communications entre les diffĂ©rents types cellulaires. Ces rĂ©sultats offrent une perspective clinique majeure pour gĂ©nĂ©rer des hypothĂšses de recherche pertinentes pour tout projet Ă©tudiant le dĂ©veloppement pulmonaire normal ou altĂ©rĂ© et dĂ©velopper et valider des modĂšles de substitution pour Ă©tudier le dĂ©veloppement pulmonaire humain (organoĂŻdes pulmonaires humains).Le second projet dĂ©crit l’utilisation de culture organotypique dĂ©rivĂ©e de tissu pulmonaire humain pour valider l’utilisation potentielle chez l’humain d’un virus adĂ©no-associĂ© (AAV pour adeno-associated virus) comme vecteur de thĂ©rapie gĂ©nique pour traiter le dĂ©ficit en protĂ©ine B du surfactant pulmonaire. Nous avons dĂ©veloppĂ© un modĂšle de “precision cut lung slices” (PCLS) obtenues Ă  partir de poumons fƓtaux humains, ces PCLS pouvaient ĂȘtre maintenues en culture et conserver leur activitĂ© mĂ©tabolique et architecture pendant plus de 7 jours. Les PCLS ont ensuite Ă©tĂ© utilisĂ©es pour valider avec succĂšs la transfection du vecteur AAV dans le parenchyme pulmonaire humain. Cette transfection suivait un effet dose-dĂ©pendant et ne prĂ©sentait pas d’effet dĂ©lĂ©tĂšre (Ă©valuĂ© par le niveau d’activitĂ© mĂ©tabolique et l’architecture des PCLS). Ces donnĂ©es dĂ©montrent l’intĂ©rĂȘt des PCLS issues de poumons humains pour Ă©valuer des thĂ©rapeutiques, soulignant l’importance de modĂšles expĂ©rimentaux complexes utilisant du tissu humain en recherche translationnelle.Le troisiĂšme projet vise Ă  dĂ©velopper une dĂ©finition consensuelle pour les cellules stromales mĂ©senchymateuses (Mesenchymal Stromal Cells ou MSC) et des lignes directrices pour reporter des essais cliniques utilisant des MSC pour amĂ©liorer la rigueur, la reproductibilitĂ©, la transparence de la recherche utilisant les MSC afin de garantir une translation sĂ»re de thĂ©rapies cellulaires efficaces en clinique. Notre protocole de recherche combine une mĂ©thodologie utilisĂ©e pour le dĂ©veloppement de consensus appelĂ©e mĂ©thode Delphi en combinaison avec une stratĂ©gie de transmission des connaissances. Nous prĂ©sentons ici notre protocole de recherche dĂ©taillĂ© et les rĂ©sultats d'une synthĂšse de la littĂ©rature (scoping review) menĂ©e pour dĂ©crire comment les MSC sont dĂ©finies et caractĂ©risĂ©es en recherche prĂ©clinique et clinique. L’analyse de notre Ă©chantillon d’études originales a mis en Ă©vidence une grande variabilitĂ© et des incohĂ©rences dans la description des MSC, leurs caractĂ©ristiques et leurs conditions de culture. De plus, la majoritĂ© des essais cliniques rapportaient de façon variable et non exhaustive ces caractĂ©ristiques importantes des MSC. Ce projet souligne l'importance du choix de la mĂ©thode d'Ă©laboration de consensus et l’aspect fondamental des stratĂ©gies de transmission de savoir en recherche translationnelle.In this thesis, we present 3 different projects that aim to support clinical translation in neonatal lung research.First, we use state-of-the-art approach to study normal human lung development at a single-cell level. We report the cellular composition, cell trajectories and cell-to-cell communication in developing human lungs with single nuclei RNA sequencing (snRNA-seq) on 23.251 nuclei isolated from nine human fetuses with gestational ages between 14 to 19 weeks of gestation. We describe nine different cell types, including rare cell populations such as pulmonary neuroendocrine cells. For each cell type, marker genes are reported and use for spatial validation using fluorescent RNA in situ hybridization. Enrichment and developmental trajectory analysis provide insight into molecular mechanisms and signaling pathways changes within cell type according to gestational age. Last, ligand-receptor analysis highlights determinants of cell-to-cell communication among the different cell types. These findings will provide a clinically relevant background for research hypotheses generation in projects studying normal or impaired lung development and help to develop and validate surrogate models to study human lung development such as human lung organoids.Second, we use a model of organotypic culture called Precision Cut Lung Slices (PCLS) from human fetal lung tissue to validate the clinical relevance of a viral vector (Adeno-associated virus AAV) for gene therapy for surfactant B deficiency in neonates. We develop a protocol to obtain and culture PCLS from human fetal lung tissues. We reported that these PCLS can be maintained up to 7 days in culture with a preserved metabolic activity and architecture. These PCLS were then successfully used to provide proof of concept that the AAV vector can efficiently transfect human lung parenchyma. PCLS were incubated at day 3 of culture with different titers of AAV (and with different cargos: mouse SPB and human SPB) for 24 hours. On day 7 of culture, we confirmed by bioluminescence and immunofluorescence that AAV can transfect human lung parenchyma with a dose dependent effect. Furthermore, assessment of the PCLS (by metabolic activity and architecture) demonstrated the absence of adverse effects on human lung tissue transfected by AAV vector. Therefore, PCLS from human lung tissue (healthy or diseased) represent a versatile tool to assess pathophysiology or therapeutics in an organotypic culture setting. It aligns with the need for more complex and holistic models and the use of human tissue in translational research.Last, we aim to develop a consensus definition for Mesenchymal Stromal Cell (MSC) and reporting guidelines for clinical trials of MSC therapy to enhance rigour, reproducibility, transparency in the MSC research and ultimately the safe translation of effective cell-based therapies in humans. Our research protocol uses the unique attributes of a consensus-building method called modified Delphi method in combination with an ‘integrated knowledge translation’ approach where key stakeholders and end-users are involved from inception and participate in every step of the study to support dissemination and implementation of the findings. We present here our detailed research protocol, and the results of a scoping review conducted to describe how MSC were defined and characterized in preclinical and clinical research. In this scoping review, we report that previous minimal criteria to define MSC provided by the International Society for Cell and Gene Therapy (ISCT) were poorly implemented with inconstant reporting among in both preclinical and clinical studies. More concerning, the clinical studies showed inconsistent completeness in reporting relevant and important information on MSC characterization and cell manufacturing processes. This project highlights important points for consensus-building strategies and the critical step of knowledge translation in translational research

    Quelles stratĂ©gies pour soutenir la translation clinique en recherche sur le poumon nĂ©onatal? Apports d'approches multidisciplinaires visant Ă  amĂ©liorer notre comprĂ©hension du dĂ©veloppement pulmonaire humain normal (single nuclei RNA seqencing), valider la pertinence clinique d’un vecteur viral de thĂ©rapie gĂ©nique sur du tissu pulmonaire humain (precision cut lung slices), et dĂ©velopper une dĂ©finition consensuelle et des lignes directrices pour reporter les essais cliniques utilisant les cellules stromales mĂ©senchymateuses.

    No full text
    In this thesis, we present 3 different projects that aim to support clinical translation in neonatal lung research.First, we use state-of-the-art approach to study normal human lung development at a single-cell level. We report the cellular composition, cell trajectories and cell-to-cell communication in developing human lungs with single nuclei RNA sequencing (snRNA-seq) on 23.251 nuclei isolated from nine human fetuses with gestational ages between 14 to 19 weeks of gestation. We describe nine different cell types, including rare cell populations such as pulmonary neuroendocrine cells. For each cell type, marker genes are reported and use for spatial validation using fluorescent RNA in situ hybridization. Enrichment and developmental trajectory analysis provide insight into molecular mechanisms and signaling pathways changes within cell type according to gestational age. Last, ligand-receptor analysis highlights determinants of cell-to-cell communication among the different cell types. These findings will provide a clinically relevant background for research hypotheses generation in projects studying normal or impaired lung development and help to develop and validate surrogate models to study human lung development such as human lung organoids.Second, we use a model of organotypic culture called Precision Cut Lung Slices (PCLS) from human fetal lung tissue to validate the clinical relevance of a viral vector (Adeno-associated virus AAV) for gene therapy for surfactant B deficiency in neonates. We develop a protocol to obtain and culture PCLS from human fetal lung tissues. We reported that these PCLS can be maintained up to 7 days in culture with a preserved metabolic activity and architecture. These PCLS were then successfully used to provide proof of concept that the AAV vector can efficiently transfect human lung parenchyma. PCLS were incubated at day 3 of culture with different titers of AAV (and with different cargos: mouse SPB and human SPB) for 24 hours. On day 7 of culture, we confirmed by bioluminescence and immunofluorescence that AAV can transfect human lung parenchyma with a dose dependent effect. Furthermore, assessment of the PCLS (by metabolic activity and architecture) demonstrated the absence of adverse effects on human lung tissue transfected by AAV vector. Therefore, PCLS from human lung tissue (healthy or diseased) represent a versatile tool to assess pathophysiology or therapeutics in an organotypic culture setting. It aligns with the need for more complex and holistic models and the use of human tissue in translational research.Last, we aim to develop a consensus definition for Mesenchymal Stromal Cell (MSC) and reporting guidelines for clinical trials of MSC therapy to enhance rigour, reproducibility, transparency in the MSC research and ultimately the safe translation of effective cell-based therapies in humans. Our research protocol uses the unique attributes of a consensus-building method called modified Delphi method in combination with an ‘integrated knowledge translation’ approach where key stakeholders and end-users are involved from inception and participate in every step of the study to support dissemination and implementation of the findings. We present here our detailed research protocol, and the results of a scoping review conducted to describe how MSC were defined and characterized in preclinical and clinical research. In this scoping review, we report that previous minimal criteria to define MSC provided by the International Society for Cell and Gene Therapy (ISCT) were poorly implemented with inconstant reporting among in both preclinical and clinical studies. More concerning, the clinical studies showed inconsistent completeness in reporting relevant and important information on MSC characterization and cell manufacturing processes. This project highlights important points for consensus-building strategies and the critical step of knowledge translation in translational research.Dans ce travail, nous rapportons 3 projets visant Ă  amĂ©liorer et soutenir la translation clinique en recherche sur le poumon nĂ©onatal.PremiĂšrement, nous dĂ©crivons l’utilisation du sĂ©quençage d'ARN sur noyaux uniques (single nuclei RNA sequencing ou snRNA-seq) pour Ă©tudier le dĂ©veloppement pulmonaire humain. Le snRNAseq sur 23,251 noyaux cellulaires isolĂ©s Ă  partir de neuf fƓtus humains (Ăąges gestationnels de 14 Ă  19 semaines de gestation) a permis de dĂ©crire neuf types cellulaires, incluant des populations cellulaires rares telles que les cellules pulmonaires neuroendocrines. Pour chaque type cellulaire, des gĂšnes marqueurs ont Ă©tĂ© identifiĂ©s et utilisĂ©s pour confirmer la rĂ©partition spatiale cellulaire au sein du tissu par hybridation in situ en fluorescence (FISH). Les analyses d’enrichissement et de trajectoires dĂ©veloppementales ont permis de dĂ©crire les modifications des voies molĂ©culaires et de signalisation au sein d’un mĂȘme type cellulaire en fonction de l'Ăąge gestationnel. L’analyse des interactions ligands-rĂ©cepteurs a mis en Ă©vidence les voies de communications entre les diffĂ©rents types cellulaires. Ces rĂ©sultats offrent une perspective clinique majeure pour gĂ©nĂ©rer des hypothĂšses de recherche pertinentes pour tout projet Ă©tudiant le dĂ©veloppement pulmonaire normal ou altĂ©rĂ© et dĂ©velopper et valider des modĂšles de substitution pour Ă©tudier le dĂ©veloppement pulmonaire humain (organoĂŻdes pulmonaires humains).Le second projet dĂ©crit l’utilisation de culture organotypique dĂ©rivĂ©e de tissu pulmonaire humain pour valider l’utilisation potentielle chez l’humain d’un virus adĂ©no-associĂ© (AAV pour adeno-associated virus) comme vecteur de thĂ©rapie gĂ©nique pour traiter le dĂ©ficit en protĂ©ine B du surfactant pulmonaire. Nous avons dĂ©veloppĂ© un modĂšle de “precision cut lung slices” (PCLS) obtenues Ă  partir de poumons fƓtaux humains, ces PCLS pouvaient ĂȘtre maintenues en culture et conserver leur activitĂ© mĂ©tabolique et architecture pendant plus de 7 jours. Les PCLS ont ensuite Ă©tĂ© utilisĂ©es pour valider avec succĂšs la transfection du vecteur AAV dans le parenchyme pulmonaire humain. Cette transfection suivait un effet dose-dĂ©pendant et ne prĂ©sentait pas d’effet dĂ©lĂ©tĂšre (Ă©valuĂ© par le niveau d’activitĂ© mĂ©tabolique et l’architecture des PCLS). Ces donnĂ©es dĂ©montrent l’intĂ©rĂȘt des PCLS issues de poumons humains pour Ă©valuer des thĂ©rapeutiques, soulignant l’importance de modĂšles expĂ©rimentaux complexes utilisant du tissu humain en recherche translationnelle.Le troisiĂšme projet vise Ă  dĂ©velopper une dĂ©finition consensuelle pour les cellules stromales mĂ©senchymateuses (Mesenchymal Stromal Cells ou MSC) et des lignes directrices pour reporter des essais cliniques utilisant des MSC pour amĂ©liorer la rigueur, la reproductibilitĂ©, la transparence de la recherche utilisant les MSC afin de garantir une translation sĂ»re de thĂ©rapies cellulaires efficaces en clinique. Notre protocole de recherche combine une mĂ©thodologie utilisĂ©e pour le dĂ©veloppement de consensus appelĂ©e mĂ©thode Delphi en combinaison avec une stratĂ©gie de transmission des connaissances. Nous prĂ©sentons ici notre protocole de recherche dĂ©taillĂ© et les rĂ©sultats d'une synthĂšse de la littĂ©rature (scoping review) menĂ©e pour dĂ©crire comment les MSC sont dĂ©finies et caractĂ©risĂ©es en recherche prĂ©clinique et clinique. L’analyse de notre Ă©chantillon d’études originales a mis en Ă©vidence une grande variabilitĂ© et des incohĂ©rences dans la description des MSC, leurs caractĂ©ristiques et leurs conditions de culture. De plus, la majoritĂ© des essais cliniques rapportaient de façon variable et non exhaustive ces caractĂ©ristiques importantes des MSC. Ce projet souligne l'importance du choix de la mĂ©thode d'Ă©laboration de consensus et l’aspect fondamental des stratĂ©gies de transmission de savoir en recherche translationnelle

    How to support clinical translation in neonatal lung research? Insights from multidisciplinary approaches to enhance our knowledge on normal human lung development in utero (single-nuclei RNA sequencing), provide proof of concept for gene therapy vir

    No full text
    Dans ce travail, nous rapportons 3 projets visant Ă  amĂ©liorer et soutenir la translation clinique en recherche sur le poumon nĂ©onatal.PremiĂšrement, nous dĂ©crivons l’utilisation du sĂ©quençage d'ARN sur noyaux uniques (single nuclei RNA sequencing ou snRNA-seq) pour Ă©tudier le dĂ©veloppement pulmonaire humain. Le snRNAseq sur 23,251 noyaux cellulaires isolĂ©s Ă  partir de neuf fƓtus humains (Ăąges gestationnels de 14 Ă  19 semaines de gestation) a permis de dĂ©crire neuf types cellulaires, incluant des populations cellulaires rares telles que les cellules pulmonaires neuroendocrines. Pour chaque type cellulaire, des gĂšnes marqueurs ont Ă©tĂ© identifiĂ©s et utilisĂ©s pour confirmer la rĂ©partition spatiale cellulaire au sein du tissu par hybridation in situ en fluorescence (FISH). Les analyses d’enrichissement et de trajectoires dĂ©veloppementales ont permis de dĂ©crire les modifications des voies molĂ©culaires et de signalisation au sein d’un mĂȘme type cellulaire en fonction de l'Ăąge gestationnel. L’analyse des interactions ligands-rĂ©cepteurs a mis en Ă©vidence les voies de communications entre les diffĂ©rents types cellulaires. Ces rĂ©sultats offrent une perspective clinique majeure pour gĂ©nĂ©rer des hypothĂšses de recherche pertinentes pour tout projet Ă©tudiant le dĂ©veloppement pulmonaire normal ou altĂ©rĂ© et dĂ©velopper et valider des modĂšles de substitution pour Ă©tudier le dĂ©veloppement pulmonaire humain (organoĂŻdes pulmonaires humains).Le second projet dĂ©crit l’utilisation de culture organotypique dĂ©rivĂ©e de tissu pulmonaire humain pour valider l’utilisation potentielle chez l’humain d’un virus adĂ©no-associĂ© (AAV pour adeno-associated virus) comme vecteur de thĂ©rapie gĂ©nique pour traiter le dĂ©ficit en protĂ©ine B du surfactant pulmonaire. Nous avons dĂ©veloppĂ© un modĂšle de “precision cut lung slices” (PCLS) obtenues Ă  partir de poumons fƓtaux humains, ces PCLS pouvaient ĂȘtre maintenues en culture et conserver leur activitĂ© mĂ©tabolique et architecture pendant plus de 7 jours. Les PCLS ont ensuite Ă©tĂ© utilisĂ©es pour valider avec succĂšs la transfection du vecteur AAV dans le parenchyme pulmonaire humain. Cette transfection suivait un effet dose-dĂ©pendant et ne prĂ©sentait pas d’effet dĂ©lĂ©tĂšre (Ă©valuĂ© par le niveau d’activitĂ© mĂ©tabolique et l’architecture des PCLS). Ces donnĂ©es dĂ©montrent l’intĂ©rĂȘt des PCLS issues de poumons humains pour Ă©valuer des thĂ©rapeutiques, soulignant l’importance de modĂšles expĂ©rimentaux complexes utilisant du tissu humain en recherche translationnelle.Le troisiĂšme projet vise Ă  dĂ©velopper une dĂ©finition consensuelle pour les cellules stromales mĂ©senchymateuses (Mesenchymal Stromal Cells ou MSC) et des lignes directrices pour reporter des essais cliniques utilisant des MSC pour amĂ©liorer la rigueur, la reproductibilitĂ©, la transparence de la recherche utilisant les MSC afin de garantir une translation sĂ»re de thĂ©rapies cellulaires efficaces en clinique. Notre protocole de recherche combine une mĂ©thodologie utilisĂ©e pour le dĂ©veloppement de consensus appelĂ©e mĂ©thode Delphi en combinaison avec une stratĂ©gie de transmission des connaissances. Nous prĂ©sentons ici notre protocole de recherche dĂ©taillĂ© et les rĂ©sultats d'une synthĂšse de la littĂ©rature (scoping review) menĂ©e pour dĂ©crire comment les MSC sont dĂ©finies et caractĂ©risĂ©es en recherche prĂ©clinique et clinique. L’analyse de notre Ă©chantillon d’études originales a mis en Ă©vidence une grande variabilitĂ© et des incohĂ©rences dans la description des MSC, leurs caractĂ©ristiques et leurs conditions de culture. De plus, la majoritĂ© des essais cliniques rapportaient de façon variable et non exhaustive ces caractĂ©ristiques importantes des MSC. Ce projet souligne l'importance du choix de la mĂ©thode d'Ă©laboration de consensus et l’aspect fondamental des stratĂ©gies de transmission de savoir en recherche translationnelle.In this thesis, we present 3 different projects that aim to support clinical translation in neonatal lung research.First, we use state-of-the-art approach to study normal human lung development at a single-cell level. We report the cellular composition, cell trajectories and cell-to-cell communication in developing human lungs with single nuclei RNA sequencing (snRNA-seq) on 23.251 nuclei isolated from nine human fetuses with gestational ages between 14 to 19 weeks of gestation. We describe nine different cell types, including rare cell populations such as pulmonary neuroendocrine cells. For each cell type, marker genes are reported and use for spatial validation using fluorescent RNA in situ hybridization. Enrichment and developmental trajectory analysis provide insight into molecular mechanisms and signaling pathways changes within cell type according to gestational age. Last, ligand-receptor analysis highlights determinants of cell-to-cell communication among the different cell types. These findings will provide a clinically relevant background for research hypotheses generation in projects studying normal or impaired lung development and help to develop and validate surrogate models to study human lung development such as human lung organoids.Second, we use a model of organotypic culture called Precision Cut Lung Slices (PCLS) from human fetal lung tissue to validate the clinical relevance of a viral vector (Adeno-associated virus AAV) for gene therapy for surfactant B deficiency in neonates. We develop a protocol to obtain and culture PCLS from human fetal lung tissues. We reported that these PCLS can be maintained up to 7 days in culture with a preserved metabolic activity and architecture. These PCLS were then successfully used to provide proof of concept that the AAV vector can efficiently transfect human lung parenchyma. PCLS were incubated at day 3 of culture with different titers of AAV (and with different cargos: mouse SPB and human SPB) for 24 hours. On day 7 of culture, we confirmed by bioluminescence and immunofluorescence that AAV can transfect human lung parenchyma with a dose dependent effect. Furthermore, assessment of the PCLS (by metabolic activity and architecture) demonstrated the absence of adverse effects on human lung tissue transfected by AAV vector. Therefore, PCLS from human lung tissue (healthy or diseased) represent a versatile tool to assess pathophysiology or therapeutics in an organotypic culture setting. It aligns with the need for more complex and holistic models and the use of human tissue in translational research.Last, we aim to develop a consensus definition for Mesenchymal Stromal Cell (MSC) and reporting guidelines for clinical trials of MSC therapy to enhance rigour, reproducibility, transparency in the MSC research and ultimately the safe translation of effective cell-based therapies in humans. Our research protocol uses the unique attributes of a consensus-building method called modified Delphi method in combination with an ‘integrated knowledge translation’ approach where key stakeholders and end-users are involved from inception and participate in every step of the study to support dissemination and implementation of the findings. We present here our detailed research protocol, and the results of a scoping review conducted to describe how MSC were defined and characterized in preclinical and clinical research. In this scoping review, we report that previous minimal criteria to define MSC provided by the International Society for Cell and Gene Therapy (ISCT) were poorly implemented with inconstant reporting among in both preclinical and clinical studies. More concerning, the clinical studies showed inconsistent completeness in reporting relevant and important information on MSC characterization and cell manufacturing processes. This project highlights important points for consensus-building strategies and the critical step of knowledge translation in translational research

    Quelles stratĂ©gies pour soutenir la translation clinique en recherche sur le poumon nĂ©onatal? Apports d'approches multidisciplinaires visant Ă  amĂ©liorer notre comprĂ©hension du dĂ©veloppement pulmonaire humain normal (single nuclei RNA seqencing), valider la pertinence clinique d’un vecteur viral de thĂ©rapie gĂ©nique sur du tissu pulmonaire humain (precision cut lung slices), et dĂ©velopper une dĂ©finition consensuelle et des lignes directrices pour reporter les essais cliniques utilisant les cellules stromales mĂ©senchymateuses.

    No full text
    In this thesis, we present 3 different projects that aim to support clinical translation in neonatal lung research.First, we use state-of-the-art approach to study normal human lung development at a single-cell level. We report the cellular composition, cell trajectories and cell-to-cell communication in developing human lungs with single nuclei RNA sequencing (snRNA-seq) on 23.251 nuclei isolated from nine human fetuses with gestational ages between 14 to 19 weeks of gestation. We describe nine different cell types, including rare cell populations such as pulmonary neuroendocrine cells. For each cell type, marker genes are reported and use for spatial validation using fluorescent RNA in situ hybridization. Enrichment and developmental trajectory analysis provide insight into molecular mechanisms and signaling pathways changes within cell type according to gestational age. Last, ligand-receptor analysis highlights determinants of cell-to-cell communication among the different cell types. These findings will provide a clinically relevant background for research hypotheses generation in projects studying normal or impaired lung development and help to develop and validate surrogate models to study human lung development such as human lung organoids.Second, we use a model of organotypic culture called Precision Cut Lung Slices (PCLS) from human fetal lung tissue to validate the clinical relevance of a viral vector (Adeno-associated virus AAV) for gene therapy for surfactant B deficiency in neonates. We develop a protocol to obtain and culture PCLS from human fetal lung tissues. We reported that these PCLS can be maintained up to 7 days in culture with a preserved metabolic activity and architecture. These PCLS were then successfully used to provide proof of concept that the AAV vector can efficiently transfect human lung parenchyma. PCLS were incubated at day 3 of culture with different titers of AAV (and with different cargos: mouse SPB and human SPB) for 24 hours. On day 7 of culture, we confirmed by bioluminescence and immunofluorescence that AAV can transfect human lung parenchyma with a dose dependent effect. Furthermore, assessment of the PCLS (by metabolic activity and architecture) demonstrated the absence of adverse effects on human lung tissue transfected by AAV vector. Therefore, PCLS from human lung tissue (healthy or diseased) represent a versatile tool to assess pathophysiology or therapeutics in an organotypic culture setting. It aligns with the need for more complex and holistic models and the use of human tissue in translational research.Last, we aim to develop a consensus definition for Mesenchymal Stromal Cell (MSC) and reporting guidelines for clinical trials of MSC therapy to enhance rigour, reproducibility, transparency in the MSC research and ultimately the safe translation of effective cell-based therapies in humans. Our research protocol uses the unique attributes of a consensus-building method called modified Delphi method in combination with an ‘integrated knowledge translation’ approach where key stakeholders and end-users are involved from inception and participate in every step of the study to support dissemination and implementation of the findings. We present here our detailed research protocol, and the results of a scoping review conducted to describe how MSC were defined and characterized in preclinical and clinical research. In this scoping review, we report that previous minimal criteria to define MSC provided by the International Society for Cell and Gene Therapy (ISCT) were poorly implemented with inconstant reporting among in both preclinical and clinical studies. More concerning, the clinical studies showed inconsistent completeness in reporting relevant and important information on MSC characterization and cell manufacturing processes. This project highlights important points for consensus-building strategies and the critical step of knowledge translation in translational research.Dans ce travail, nous rapportons 3 projets visant Ă  amĂ©liorer et soutenir la translation clinique en recherche sur le poumon nĂ©onatal.PremiĂšrement, nous dĂ©crivons l’utilisation du sĂ©quençage d'ARN sur noyaux uniques (single nuclei RNA sequencing ou snRNA-seq) pour Ă©tudier le dĂ©veloppement pulmonaire humain. Le snRNAseq sur 23,251 noyaux cellulaires isolĂ©s Ă  partir de neuf fƓtus humains (Ăąges gestationnels de 14 Ă  19 semaines de gestation) a permis de dĂ©crire neuf types cellulaires, incluant des populations cellulaires rares telles que les cellules pulmonaires neuroendocrines. Pour chaque type cellulaire, des gĂšnes marqueurs ont Ă©tĂ© identifiĂ©s et utilisĂ©s pour confirmer la rĂ©partition spatiale cellulaire au sein du tissu par hybridation in situ en fluorescence (FISH). Les analyses d’enrichissement et de trajectoires dĂ©veloppementales ont permis de dĂ©crire les modifications des voies molĂ©culaires et de signalisation au sein d’un mĂȘme type cellulaire en fonction de l'Ăąge gestationnel. L’analyse des interactions ligands-rĂ©cepteurs a mis en Ă©vidence les voies de communications entre les diffĂ©rents types cellulaires. Ces rĂ©sultats offrent une perspective clinique majeure pour gĂ©nĂ©rer des hypothĂšses de recherche pertinentes pour tout projet Ă©tudiant le dĂ©veloppement pulmonaire normal ou altĂ©rĂ© et dĂ©velopper et valider des modĂšles de substitution pour Ă©tudier le dĂ©veloppement pulmonaire humain (organoĂŻdes pulmonaires humains).Le second projet dĂ©crit l’utilisation de culture organotypique dĂ©rivĂ©e de tissu pulmonaire humain pour valider l’utilisation potentielle chez l’humain d’un virus adĂ©no-associĂ© (AAV pour adeno-associated virus) comme vecteur de thĂ©rapie gĂ©nique pour traiter le dĂ©ficit en protĂ©ine B du surfactant pulmonaire. Nous avons dĂ©veloppĂ© un modĂšle de “precision cut lung slices” (PCLS) obtenues Ă  partir de poumons fƓtaux humains, ces PCLS pouvaient ĂȘtre maintenues en culture et conserver leur activitĂ© mĂ©tabolique et architecture pendant plus de 7 jours. Les PCLS ont ensuite Ă©tĂ© utilisĂ©es pour valider avec succĂšs la transfection du vecteur AAV dans le parenchyme pulmonaire humain. Cette transfection suivait un effet dose-dĂ©pendant et ne prĂ©sentait pas d’effet dĂ©lĂ©tĂšre (Ă©valuĂ© par le niveau d’activitĂ© mĂ©tabolique et l’architecture des PCLS). Ces donnĂ©es dĂ©montrent l’intĂ©rĂȘt des PCLS issues de poumons humains pour Ă©valuer des thĂ©rapeutiques, soulignant l’importance de modĂšles expĂ©rimentaux complexes utilisant du tissu humain en recherche translationnelle.Le troisiĂšme projet vise Ă  dĂ©velopper une dĂ©finition consensuelle pour les cellules stromales mĂ©senchymateuses (Mesenchymal Stromal Cells ou MSC) et des lignes directrices pour reporter des essais cliniques utilisant des MSC pour amĂ©liorer la rigueur, la reproductibilitĂ©, la transparence de la recherche utilisant les MSC afin de garantir une translation sĂ»re de thĂ©rapies cellulaires efficaces en clinique. Notre protocole de recherche combine une mĂ©thodologie utilisĂ©e pour le dĂ©veloppement de consensus appelĂ©e mĂ©thode Delphi en combinaison avec une stratĂ©gie de transmission des connaissances. Nous prĂ©sentons ici notre protocole de recherche dĂ©taillĂ© et les rĂ©sultats d'une synthĂšse de la littĂ©rature (scoping review) menĂ©e pour dĂ©crire comment les MSC sont dĂ©finies et caractĂ©risĂ©es en recherche prĂ©clinique et clinique. L’analyse de notre Ă©chantillon d’études originales a mis en Ă©vidence une grande variabilitĂ© et des incohĂ©rences dans la description des MSC, leurs caractĂ©ristiques et leurs conditions de culture. De plus, la majoritĂ© des essais cliniques rapportaient de façon variable et non exhaustive ces caractĂ©ristiques importantes des MSC. Ce projet souligne l'importance du choix de la mĂ©thode d'Ă©laboration de consensus et l’aspect fondamental des stratĂ©gies de transmission de savoir en recherche translationnelle

    Severe Fetal Abnormality and Outcomes of Continued Pregnancies: A French Multicenter Retrospective Study

    No full text
    International audienceObjectives To describe a population choosing to continue with their pregnancy despite being eligible to receive a medical termination of pregnancy (TOP). Methods Nine-year retrospective study of data (01/01/2006 to 31/12/2014) from three French prenatal diagnostic centers describing the perinatal outcomes of these pregnancies. Pregnancies were classified according to etiology and severity of its fetal pathology. Several perinatal parameters were described: maternal characteristics, parental prenatal choices and information on the pregnancy and neonatal outcomes. These parameters were classified in function of the severity of fetal pathology according to the classification proposed by Dommergues et al. (Prenatal Diagnosis 30(6):531-539, 2010) Results Overall, 155 pregnancies were continued; 140 have been included in our study. Pregnancy outcomes consisted of four TOPs (2.9%); 20 in utero deaths (14.3%); 110 live births (78.6%) of which 55.4% were still alive at 2 years old as the most recent information; and 6 (4.2%) with unknown outcomes. In 27 cases, perinatal palliative care was requested (an increase of 37% over 9 years). 36.4% of cases were classified as having a high mortality risk; 19.3% with a severe handicap risk; 11.4% with a risk of isolated intellectual disability; and 32.9% with an uncertain prognosis. The parental decisions to choose perinatal palliative care were significantly higher within the high mortality risk group as compared to other severity groups (p < 0.001); this group also had a significantly higher mortality (p < 0.001), with a survival rate of 26.3%. Conclusion Over the study period, in France, there was an increase in continued pregnancies, despite a diagnosis of severe fetal pathology in France. Therefore, it is essential that perinatal professionals are provided with a palliative care framework and training in their approach for this population which is heterogeneous in terms of etiology

    Single cell transcriptomic analysis of murine lung development on hyperoxia-induced damage

    Get PDF
    During late lung development, alveolar and microvascular development is finalized to enable sufficient gas exchange. Impaired late lung development manifests as bronchopulmonary dysplasia (BPD) in preterm infants. Single-cell RNA sequencing (scRNA-seq) allows for assessment of complex cellular dynamics during biological processes, such as development. Here, we use MULTI-seq to generate scRNA-seq profiles of over 66,000 cells from 36 mice during normal or impaired lung development secondary to hyperoxia with validation of some of the findings in lungs from BPD patients. We observe dynamic populations of cells, including several rare cell types and putative progenitors. Hyperoxia exposure, which mimics the BPD phenotype, alters the composition of all cellular compartments, particularly alveolar epithelium, stromal fibroblasts, capillary endothelium and macrophage populations. Pathway analysis and predicted dynamic cellular crosstalk suggest inflammatory signaling as the main driver of hyperoxia-induced changes. Our data provides a single-cell view of cellular changes associated with late lung development in health and disease. It is unclear how changes in gene expression are induced by changes in oxygen levels during late lung development. Here, the authors provide data from MULTI-seq scRNAseq in mice showing exposure to higher oxygen levels affects cell fates, especially for alveolarisation, and define gene/cell signatures of impaired lung development under hyperoxia.Peer reviewe

    Dynamics of the digestive acquisition of bacterial carriage and integron presence by French preterm newborns according to maternal colonization: The DAIR3N multicentric study

    Get PDF
    ObjectivesThe study aimed to describe the dynamics and risk factors of Gram-negative bacteria (GNB) acquisition in preterm infants.MethodsThis prospective multicenter French study included mothers hospitalized for preterm delivery and their newborns, followed until hospital discharge. Maternal feces and vaginal fluids at delivery, and neonatal feces from birth to discharge were tested for cultivable GNB, potential acquired resistance, and integrons. The primary outcome was the acquisition of GNB and integrons in neonatal feces, and their dynamics, evaluated by survival analysis using the actuarial method. Risk factors were analyzed using Cox models.ResultsTwo hundred thirty-eight evaluable preterm dyads were included by five different centers over 16 months. GNB were isolated in 32.6% of vaginal samples, with 15.4% of strains producing extended-spectrum beta-lactamase (ESBL) or hyperproducing cephalosporinase (HCase), and in 96.2% of maternal feces, with 7.8% ESBL-GNB or HCase-GNB. Integrons were detected in 40.2% of feces and 10.6% of GNB strains. The mean (SD) length of stay of newborns was 39.5 (15.9) days; 4 died in the hospital. At least one infection episode occurred in 36.1% of newborns. The acquisition of GNB and integrons was progressive from birth to discharge. At discharge, half of newborns had ESBL-GNB or HCase-GNB, independently favored by a premature rupture of membranes (Hazard Ratio (HR), 3.41, 95% confidence interval (CI), 1.71; 6.81), and 25.6% had integrons (protective factor: multiple gestation, HR, 0.367, 95% CI, 0.195; 0.693).ConclusionIn preterm newborns, the acquisitions of GNB, including resistant ones, and integrons are progressive from birth to discharge. A premature rupture of membranes favored the colonization by ESBL-GNB or Hcase-GNB

    Optimising homeothermy in neonates: A systematic review and clinical guidelines from the French Neonatal Society

    No full text
    AimThermal instability is harmful on the newborn infant. We sought to draw up practical guidelines on maintaining homeothermy alongside skin-to-skin contact.MethodsA systematic analysis of the literature identified relevant studies between 2000 and 2021 in the PubMed database. Selected publications were evaluated, and their level of evidence was graded, in order to underpin the development of clinical guidelines.ResultsWe identified 7 meta-analyses and 64 clinical studies with a focus on newborn infants homeothermy. Skin-to-skin contact is the easiest and most rapidly implementable method to prevent body heat loss. Alongside skin-to-skin contact, monitoring the newborn infant's body temperature with a target of 37.0°C is essential. For newborn infants <32 weeks of gestation, a skullcap and a polyethylene bag should be used in the delivery room or during transport. To limit water loss, inhaled gases humidification and warming is recommended, and preterm infants weighing less than 1600 g should be nursed in a closed, convective incubator. With regard to incubators, there are no clear benefits for single- versus double-wall incubators as well as for air versus skin servo control.ConclusionAlongside skin-to-skin contact, a bundle of practical guidelines could improve the maintenance of homeothermy in the newborn infant
    corecore