13 research outputs found

    Pparγ2 Is a Key Driver of Longevity in the Mouse

    Get PDF
    Aging involves a progressive physiological remodeling that is controlled by both genetic and environmental factors. Many of these factors impact also on white adipose tissue (WAT), which has been shown to be a determinant of lifespan. Interrogating a transcriptional network for predicted causal regulatory interactions in a collection of mouse WAT from F2 crosses with a seed set of 60 known longevity genes, we identified a novel transcriptional subnetwork of 742 genes which represent thus-far-unknown longevity genes. Within this subnetwork, one gene was Pparg (Nr1c3), an adipose-enriched nuclear receptor previously not associated with longevity. In silico, both the PPAR signaling pathway and the transcriptional signature of Pparγ agonist rosiglitazone overlapped with the longevity subnetwork, while in vivo, lowered expression of Pparg reduced lifespan in both the lipodystrophic Pparg1/2-hypomorphic and the Pparg2-deficient mice. These results establish Pparγ2 as one of the determinants of longevity and suggest that lifespan may be rather determined by a purposeful genetic program than a random process

    Nat Genet

    Get PDF
    The function of the majority of genes in the mouse and human genomes remains unknown. The mouse embryonic stem cell knockout resource provides a basis for the characterization of relationships between genes and phenotypes. The EUMODIC consortium developed and validated robust methodologies for the broad-based phenotyping of knockouts through a pipeline comprising 20 disease-oriented platforms. We developed new statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no previous functional annotation. We captured data from over 27,000 mice, finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. New phenotypes were uncovered for many genes with previously unknown function, providing a powerful basis for hypothesis generation and further investigation in diverse systems.Comment in : Genetic differential calculus. [Nat Genet. 2015] Comment in : Scaling up phenotyping studies. [Nat Biotechnol. 2015

    Témoignage de Laurent De Pouilly, Entraîneur National de Patinage Artistique

    No full text
    Pouilly Laurent de. Témoignage de Laurent De Pouilly, Entraîneur National de Patinage Artistique . In: Les Cahiers de l'INSEP, n°16-17, 1996. Sélection et préparation terminale pour les championnats du monde et les Jeux olympiques. pp. 109-111

    Genetic background determines metabolic phenotypes in the mouse

    No full text
    To evaluate the contribution of genetic background to phenotypic variation, we compared a large range of biochemical and metabolic parameters at different ages of four inbred mice strains, C57BL/6J, 129SvPas, C3HeB/FeJ, and Balb/cByJ. Our results demonstrate that important metabolic, hematologic, and biochemical differences exist between these different inbred strains. Most of these differences are gender independent and are maintained or accentuated throughout life. It is therefore imperative that the genetic background is carefully defined in phenotypic studies. Our results also argue that certain backgrounds are more suited to study a given physiologic phenomenon, as distinct mouse strains have a different propensity to develop particular biochemical, hematologic, and metabolic abnormalities. These genetic differences can furthermore be exploited to identify new genes/proteins that contribute to phenotypic abnormalities. The choice of the genetic background in which to generate and analyze genetically engineered mutant mice is important as it is, together with environmental factors, one of the most important contributors to the variability of phenotypic results

    Monoclonal antibody conjugated magnetic nanoparticles could target MUC-1-positive cells in vitro

    No full text
    MUC1 antigen is recognized as a high-molecular-weight glycoprotein that is unexpectedly over-expressed in human breast and other carcinomas. In contrast, C595 a monoclonal antibody (mAb) against the protein core of the human urinary epithelial machine, is commonly expressed in breast carcinomas. The aim of this study was to conjugate ultra-small super paramagnetic iron oxide nanoparticles (USPIO) with C595 mAb, in order to detect in vivo MUC1 expression. A dual contrast agent (the C595 antibody-conjugated USPIO labeled with 99mTc) was prepared for targeted imaging and therapy of anti-MUC1-expressing cancers. The C595 antibody-conjugated USPIO had good stability and reactivity in the presence of blood plasma at 37°C. No significant differences were observed in immune-reactivity results between conjugated and nonconjugated nanoparticles. The T1 and T2 measurements show >79 and 29% increments (for 0.02mg/ml iron concentrations) in T1 and T2 values for USPIO-C595 in comparison with USPIO, respectively. The nanoprobes showed the interesting targeting capability of finding the MUC1-positive cell line in vitro. However, we found disappointing in vivo results (i.e. very low accumulation of nanoprobes in the targeted site while >80% of the injected dose per gram was taken up by the liver and spleen), not only due to the coverage of targeting site by protein corona but also because of absorption of opsonin-based proteins at the surface of nanoprobes
    corecore