116 research outputs found

    Design and development of 100% bio-based high-grade hemp/epoxy composites

    Get PDF
    In order to develop 100% bio-based high-grade epoxy composites, in this study, bio-based epoxy thermosets and hemp slivers are processed and characterized by different technologies. Epoxy resins are synthesized from the diglycidylether of Eugenol, extracted from cloves. They are cured with bio-based acid anhydrides. The physicochemical properties of the resulting epoxy resins are characterized using thermogravimetric analyses (TGA), differential scanning calorimetry (DSC), and nanoindentation. The mechanical properties of hemp fibres extracted from the slivers are also determined using tensile tests. After their processing and characterization, these bio-based constituents are then used to manufacture unidirectional composites by thermocompression. Composite specimens are tested under 3-points bending. Preliminary results show a stiffness of about 9 GPa and a strength of approximately 170 MPa for a fibres volume fraction of 22%. These mechanical properties are promising since they make this material competitive to substitute petroleum-based composites in secondary structural applications

    'Palaeoshellomics' reveals the use of freshwater mother-of-pearl in prehistory

    Get PDF
    The extensive use of mollusc shell as a versatile raw material is testament to its importance in prehistoric times. The consistent choice of certain species for different purposes, including the making of ornaments, is a direct representation of how humans viewed and exploited their environment. The necessary taxonomic information, however, is often impossible to obtain from objects that are small, heavily worked or degraded. Here we propose a novel biogeochemical approach to track the biological origin of prehistoric mollusc shell. We conducted an in-depth study of archaeological ornaments using microstructural, geochemical and biomolecular analyses, including 'palaeoshellomics', the first application of palaeoproteomics to mollusc shells (and indeed to any invertebrate calcified tissue). We reveal the consistent use of locally-sourced freshwater mother-of-pearl for the standardized manufacture of 'double-buttons'. This craft is found throughout Europe between 4200-3800 BCE, highlighting the ornament-makers' profound knowledge of the biogeosphere and the existence of cross-cultural traditions

    The skeleton of the staghorn coral Acropora millepora: molecular and structural characterization

    Get PDF
    15 pagesInternational audienceThe scleractinian coral Acropora millepora is one of the most studied species from the Great Barrier Reef. This species has been used to understand evolutionary, immune and developmental processes in cnidarians. It has also been subject of several ecological studies in order to elucidate reef responses to environmental changes such as temperature rise and ocean acidification (OA). In these contexts, several nucleic acid resources were made available. When combined to a recent proteomic analysis of the coral skeletal organic matrix (SOM), they enabled the identification of several skeletal matrix proteins, making A. millepora into an emerging model for biomineralization studies. Here we describe the skeletal microstructure of A. millepora skeleton, together with a functional and biochemical characterization of its occluded SOM that focuses on the protein and saccharidic moieties. The skeletal matrix proteins show a large range of isoelectric points, compositional patterns and signatures. Besides secreted proteins, there are a significant number of proteins with membrane attachment sites such as transmembrane domains and GPI anchors as well as proteins with integrin binding sites. These features show that the skeletal proteins must have strong adhesion properties in order to function in the calcifying space. Moreover this data suggest a molecular connection between the calcifying epithelium and the skeletal tissue during biocalcification. In terms of sugar moieties, the enrichment of the SOM in arabinose is striking, and the monosaccharide composition exhibits the same signature as that of mucus of acroporid corals. Finally, we observe that the interaction of the acetic acid soluble SOM on the morphology of in vitro grown CaCO3 crystals is very pronounced when compared with the calcifying matrices of some mollusks. In light of these results, we wish to commend Acropora millepora as a model for biocalcification studies in scleractinians, from molecular and structural viewpoints

    Organotin(IV) Complexes Containing Sn–O–Se Moieties: A Structural Inventory

    No full text
    International audienc

    CO2 Derivatives of Molecular Tin Compounds. Part 1: Hemicarbonato and Carbonato Complexes

    No full text
    International audienceThis review focuses on organotin compounds bearing hemicarbonate and carbonate ligands, and whose molecular structures have been previously resolved by single-crystal X-ray diffraction analysis. Most of them were isolated within the framework of studies devoted to the reactivity of tin precursors with carbon dioxide at atmospheric or elevated pressure. Alternatively, and essentially for the preparation of some carbonato derivatives, inorganic carbonate salts such as K 2 CO 3, Cs 2 CO 3 , Na 2 CO 3 and NaHCO 3 were also used as coreagents. In terms of the number of X-ray structures, carbonate compounds are the most widely represented (to date, there are 23 depositions in the Cambridge Structural Database), while hemicarbonate derivatives are rarer; only three have so far been characterized in the solid-state, and exclusively for diorganotin complexes. For each compound, the synthesis conditions are first specified. Structural aspects involving, in particular, the modes of coordination of the hemicarbonato and carbonato moieties and the coordination geometry around tin are then described and illustrated (for most cases) by showing molecular representations. Moreover, when they were available in the original reports, some characteristic spectroscopic data are also given for comparison (in table form). Carbonato complexes are arbitrarily listed according to their decreasing number of hydrocarbon substituents linked to tin atoms, namely tri-, di-, and mono-organotins. Four additional examples, involving three CO 2 derivatives of C,N-chelated stannoxanes and one of a trinuclear nickel cluster Sn-capped, are also included in the last part of the chapter

    CO2 Derivatives of Molecular Tin Compounds. Part 2: Carbamato, Formato, Phosphinoformato and Metallocarboxylato Complexes

    No full text
    International audienceSingle-crystal X-ray diffraction structures of organotin compounds bearing hemicarbonate and carbonate ligands were recently reviewed by us—“CO2 Derivatives of Molecular Tin Compounds. Part 1: Hemicarbonato and Carbonato Complexes”, Inorganics 2020, 8, 31—based on crystallographic data available from the Cambridge Structural Database. Interestingly, this first collection revealed that most of the compounds listed were isolated in the context of studies devoted to the reactivity of tin precursors towards carbon dioxide, at atmospheric pressure or under pressure, thus highlighting the suitable disposition of Sn to fix CO2. In the frame of a second part, the present review carries on to explore CO2 derivatives of molecular tin compounds by describing successively the complexes with carbamato, formato, and phosphinoformato ligands, and obtained from insertion reactions of carbon dioxide into Sn–X bonds (X = N, H, P, respectively). The last chapter is devoted to X-ray structures of transition metal/tin CO2 complexes exhibiting metallocarboxylato ligands. As in Part 1, for each tin compound reported and when described in the original study, the structural descriptions are supplemented by synthetic conditions and spectroscopic data

    s-Block metal scorpionates – A new sodium hydrido-tris(3,5-dimethyl-1-pyrazolyl)borate salt showing an unusual core stabilized by bridging and terminal O-bonded DMSO ligands

    No full text
    International audiences-Block metal scorpionates-A new sodium hydrido-tris(3,5-dimethyl-1-pyrazolyl)borate salt showing an unusual core stabilized by bridging and terminal O-bonded DMSO ligands https://doi. Abstract: Dissolution of [(ÎĽ-Me 2 CO) 3 (NaTp *) 2 ] (1) (Tp* = hydrido-tris(3,5-dimethyl-1-pyrazolyl)borate) in DMSO at room temperature leads to the growth of colourless crystals characterized as the new salt [Na 2 Tp * (ÎĽ-Me 2 SO) 3 (Me 2 SO) 3 ] [NaTp * 2 ] (2). 2 crystallized in the trigonal space group R3 with Z = 3, a = 14.1227(2) Ă…, b = 14.1227(10) Ă…, c = 33.9685(2) Ă…, and V = 5867.35(17) Ă… 3. Interestingly, anion and cation of 2 both contain the Tp* ligand. Moreover, the cationic moiety highlights an unusual sodium atom hexacoordi-nated by six DMSO molecules acting as O-bonded ligands. Three of which exhibit a bridging coordination mode and three are in terminal position. To the best of our knowledge , the framework of [Na 2 Tp * (ÎĽ-Me 2 SO) 3 (Me 2 SO) 3 ] is unprecedented
    • …
    corecore