39 research outputs found

    Older Adults and Photo-Elicited Perspectives on Shopping for Groceries in a Changing Community

    Get PDF
    Background: A community experiencing gentrification created challenges for older adults and their ability to access food. The purpose of this qualitative study was to examine barriers and facilitators perceived by three urban-dwelling older adults during their grocery shopping experiences. Methods: The researchers conducted photo-elicitation supported interviews to gather information on grocery shopping from three older adults attending a local senior center. Photo-elicited interviews were conducted, and the thematic analysis examined the participants’ perspectives on their experiences. Results: Thematic analysis revealed the participants’ experiences in a changing landscape. In the categories of community resources, transportation, and the store, analysis revealed the following themes: encountering obstacles, becoming frustrated, and identifying strategies and facilitators. These themes represent a process for older adults whereby they adapt to obtain their needed or desired items when shopping for groceries. Conclusion: In a community facing urban renewal and gentrification, older adults encountered obstacles and adapted in ways that were productive but not always safe or supportive of good health. This study illustrates the adaptive (or maladaptive) strategies of the participants who are managing change in their community. Advocating for affordable transportation in communities and modifying grocery store layout can support the older adult shoppers

    A proteomics analysis of 5xFAD mouse brain regions reveals the lysosome-associated protein Arl8b as a candidate biomarker for Alzheimer's disease

    Get PDF
    BACKGROUND: Alzheimer's disease (AD) is characterized by the intra- and extracellular accumulation of amyloid-β (Aβ) peptides. How Aβ aggregates perturb the proteome in brains of patients and AD transgenic mouse models, remains largely unclear. State-of-the-art mass spectrometry (MS) methods can comprehensively detect proteomic alterations, providing relevant insights unobtainable with transcriptomics investigations. Analyses of the relationship between progressive Aβ aggregation and protein abundance changes in brains of 5xFAD transgenic mice have not been reported previously. METHODS: We quantified progressive Aβ aggregation in hippocampus and cortex of 5xFAD mice and controls with immunohistochemistry and membrane filter assays. Protein changes in different mouse tissues were analyzed by MS-based proteomics using label-free quantification; resulting MS data were processed using an established pipeline. Results were contrasted with existing proteomic data sets from postmortem AD patient brains. Finally, abundance changes in the candidate marker Arl8b were validated in cerebrospinal fluid (CSF) from AD patients and controls using ELISAs. RESULTS: Experiments revealed faster accumulation of Aβ42 peptides in hippocampus than in cortex of 5xFAD mice, with more protein abundance changes in hippocampus, indicating that Aβ42 aggregate deposition is associated with brain region-specific proteome perturbations. Generating time-resolved data sets, we defined Aβ aggregate-correlated and anticorrelated proteome changes, a fraction of which was conserved in postmortem AD patient brain tissue, suggesting that proteome changes in 5xFAD mice mimic disease-relevant changes in human AD. We detected a positive correlation between Aβ42 aggregate deposition in the hippocampus of 5xFAD mice and the abundance of the lysosome-associated small GTPase Arl8b, which accumulated together with axonal lysosomal membranes in close proximity of extracellular Aβ plaques in 5xFAD brains. Abnormal aggregation of Arl8b was observed in human AD brain tissue. Arl8b protein levels were significantly increased in CSF of AD patients. CONCLUSIONS: We report a comprehensive biochemical and proteomic investigation of hippocampal and cortical brain tissue derived from 5xFAD transgenic mice, providing a valuable resource to the neuroscientific community. We identified Arl8b, with significant abundance changes in 5xFAD and AD patient brains. Arl8b might enable the measurement of progressive lysosome accumulation in AD patients and have clinical utility as a candidate biomarker

    Proceedings of the 3rd Biennial Conference of the Society for Implementation Research Collaboration (SIRC) 2015: advancing efficient methodologies through community partnerships and team science

    Get PDF
    It is well documented that the majority of adults, children and families in need of evidence-based behavioral health interventionsi do not receive them [1, 2] and that few robust empirically supported methods for implementing evidence-based practices (EBPs) exist. The Society for Implementation Research Collaboration (SIRC) represents a burgeoning effort to advance the innovation and rigor of implementation research and is uniquely focused on bringing together researchers and stakeholders committed to evaluating the implementation of complex evidence-based behavioral health interventions. Through its diverse activities and membership, SIRC aims to foster the promise of implementation research to better serve the behavioral health needs of the population by identifying rigorous, relevant, and efficient strategies that successfully transfer scientific evidence to clinical knowledge for use in real world settings [3]. SIRC began as a National Institute of Mental Health (NIMH)-funded conference series in 2010 (previously titled the “Seattle Implementation Research Conference”; $150,000 USD for 3 conferences in 2011, 2013, and 2015) with the recognition that there were multiple researchers and stakeholdersi working in parallel on innovative implementation science projects in behavioral health, but that formal channels for communicating and collaborating with one another were relatively unavailable. There was a significant need for a forum within which implementation researchers and stakeholders could learn from one another, refine approaches to science and practice, and develop an implementation research agenda using common measures, methods, and research principles to improve both the frequency and quality with which behavioral health treatment implementation is evaluated. SIRC’s membership growth is a testament to this identified need with more than 1000 members from 2011 to the present.ii SIRC’s primary objectives are to: (1) foster communication and collaboration across diverse groups, including implementation researchers, intermediariesi, as well as community stakeholders (SIRC uses the term “EBP champions” for these groups) – and to do so across multiple career levels (e.g., students, early career faculty, established investigators); and (2) enhance and disseminate rigorous measures and methodologies for implementing EBPs and evaluating EBP implementation efforts. These objectives are well aligned with Glasgow and colleagues’ [4] five core tenets deemed critical for advancing implementation science: collaboration, efficiency and speed, rigor and relevance, improved capacity, and cumulative knowledge. SIRC advances these objectives and tenets through in-person conferences, which bring together multidisciplinary implementation researchers and those implementing evidence-based behavioral health interventions in the community to share their work and create professional connections and collaborations

    Pacific Northwest Ballet

    No full text

    Additional file 2 of A proteomics analysis of 5xFAD mouse brain regions reveals the lysosome-associated protein Arl8b as a candidate biomarker for Alzheimer’s disease

    No full text
    Additional file 2: Fig. S1. Aβ peptide levels and APP and PSEN1 expression in hippocampus and cortex of 5xFAD mice. Fig. S2. Analysis of Aβ aggregate formation using membrane filter assays and sucrose gradient centrifugations. Fig. S3. Analysis of wild-type expression profiles to assess whether the protein abundance changes detected in 5xFAD brains are more frequent among highly expressed mouse proteins. Fig. S4. Functional analysis of dysregulated proteins defined with a pairwise model in brains of 5xFAD mice. Fig. S5. Enrichment analysis of cell-type-specific marker proteins among dysregulated proteins in brains of 5xFAD mice. Fig. S6. IPA and gene ontology enrichment analysis of differentially expressed proteins defined with the full model in cortical and hippocampal tissues of 5xFAD mice. Fig. S7. Ingenuity pathway analysis of Aβ-correlated and anticorrelated DEPs defined by the pairwise model in brains of 5xFAD mice. Fig. S8. Numbers of pairwise common DEPs in the mouse datasets and datasets from human studies. Fig. S9. Strategy to define mouse protein signatures that are concordantly altered also in AD patient brains. Fig. S10. Investigation of the overlap of DEPs in brains of 5xFAD mice with DEPs in asymptomatic AD brains. Fig. S11. Analysis of the correlation in protein effect sizes between 5xFAD mouse and AD patient brains for proteins present in all studies. Fig. S12. Selection of the neuronal lysosome-associated protein Arl8b by step-by-step data filtering. Fig. S13. Immunofluorescence analysis of 5xFAD brain slices. Fig. S14. Analysis of Arl8b protein aggregates using human brain homogenates derived from AD patients and control individuals
    corecore