42 research outputs found

    The synaptic Muscle-Specific Kinase (MuSK) complex: new partners, new functions.

    Get PDF
    The muscle-specific kinase MuSK is part of an agrin receptor complex which stimulates tyrosine phosphorylation and drives clustering of acetylcholine receptors (AChRs) in the postsynaptic membrane at the vertebrate neuromuscular junction. MuSK also regulates synaptic gene transcription in subsynaptic nuclei. Over the past few years decisive progress has been made in the identification of MuSK effectors, helping at understanding its function in the formation of the NMJ. Alike AChR, MuSK and several of its partners are the target of mutations responsible for diseases of the NMJ, such as congenital myasthenic syndromes. This minireview will focus on the multiple MuSK effectors so far identified that place MuSK at the center of a multifunctional signaling complex involved in the organization of the NMJ and associated disorders

    MuSK is required for anchoring acetylcholinesterase at the neuromuscular junction

    Get PDF
    At the neuromuscular junction, acetylcholinesterase (AChE) is mainly present as asymmetric forms in which tetramers of catalytic subunits are associated to a specific collagen, collagen Q (ColQ). The accumulation of the enzyme in the synaptic basal lamina strictly relies on ColQ. This has been shown to be mediated by interaction between ColQ and perlecan, which itself binds dystroglycan. Here, using transfected mutants of ColQ in a ColQ-deficient muscle cell line or COS-7 cells, we report that ColQ clusterizes through a more complex mechanism. This process requires two heparin-binding sites contained in the collagen domain as well as the COOH terminus of ColQ. Cross-linking and immunoprecipitation experiments in Torpedo postsynaptic membranes together with transfection experiments with muscle-specific kinase (MuSK) constructs in MuSK-deficient myotubes or COS-7 cells provide the first evidence that ColQ binds MuSK. Together, our data suggest that a ternary complex containing ColQ, perlecan, and MuSK is required for AChE clustering and support the notion that MuSK dictates AChE synaptic localization at the neuromuscular junction

    Cytoplasmic polyadenylation and cytoplasmic polyadenylation element-dependent mRNA regulation are involved in Xenopus retinal axon development.

    Get PDF
    BACKGROUND: Translation in axons is required for growth cone chemotropic responses to many guidance cues. Although locally synthesized proteins are beginning to be identified, how specific mRNAs are selected for translation remains unclear. Control of poly(A) tail length by cytoplasmic polyadenylation element (CPE) binding protein 1 (CPEB1) is a conserved mechanism for mRNA-specific translational regulation that could be involved in regulating translation in axons. RESULTS: We show that cytoplasmic polyadenylation is required in Xenopus retinal ganglion cell (RGC) growth cones for translation-dependent, but not translation-independent, chemotropic responses in vitro, and that inhibition of CPE binding through dominant-negative interference severely reduces axon outgrowth in vivo. CPEB1 mRNA transcripts are present at low levels in RGCs but, surprisingly, CPEB1 protein was not detected in eye or brain tissue, and CPEB1 loss-of-function does not affect chemotropic responses or pathfinding in vivo. UV cross-linking experiments suggest that CPE-binding proteins other than CPEB1 in the retina regulate retinal axon development. CONCLUSION: These results indicate that cytoplasmic polyadenylation and CPE-mediated translational regulation are involved in retinal axon development, but that CPEB1 may not be the key regulator of polyadenylation in the developing retina.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    A molecular mechanism for the heparan sulfate dependence of Slit-Robo signaling

    Get PDF
    Slit is a large secreted protein that provides important guidance cues in the developing nervous system and in other organs. Signaling by Slit requires two receptors, Robo transmembrane proteins and heparan sulfate (HS) proteoglycans. How HS controls Slit-Robo signaling is unclear. Here we show that the second leucine-rich repeat domain (D2) of Slit, which mediates binding to Robo receptors, also contains a functionally important binding site for heparin, a highly sulfated variant of HS. Heparin markedly enhances the affinity of the Slit-Robo interaction in a solid-phase binding assay. Analytical gel filtration chromatography demonstrates that Slit D2 associates with a soluble Robo fragment and a heparin-derived oligosaccharide to form a ternary complex. Retinal growth cone collapse triggered by Slit D2 requires cell surface HS or exogenously added heparin. Mutation of conserved basic residues in the C-terminal cap region of Slit D2 reduces heparin binding and abolishes biological activity. We conclude that heparin/HS is an integral component of the minimal Slit-Robo signaling complex and serves to stabilize the relatively weak Slit-Robo interaction

    Nedd4/PTEN : un couple très branché !

    No full text

    Entre muscle et nerf: comprendre la jonction neuromusculaire pour mieux comprendre le mouvement

    No full text
    International audienc
    corecore