1,227 research outputs found

    Workforce Development in the South West Voluntary and Community Sectors:Skill Shortages Study

    Get PDF
    The Voluntary Sector National Training Organisation, now the National  Workforce Development Hub, describes the Voluntary and Community  Sector  as  diverse  and  covering  a  variety  of  different  organisations.  Organisations range from traditional charities, to companies that trade to  support their social aims, through to informal community organisations.  The sector also includes federations, or networks of local groups working  under national umbrellas.  Voluntary and community sector organisations  provide  a  wide  range  of  services  and  activities  and  many  of  the  organisations are involved in the delivery of learning, whether through  accredited training or informal learning.  The Government has increasingly recognised the importance of Voluntary  and  community  sector  organisations  and  the  key  role  that  they  play  nationally,  regionally  and  locally.    Initiatives  to  support  the  sector,  underpinned by funding, have been undertaken and the Government has  been  active  in  encouraging  and  commissioning  research  and  strategic  planning  in  the  sector,  in  particular  emphasising  the  importance  of  developing the skills, capacities and potential of the workforce.  Sector organisations generally display a strong commitment to training  and workforce development.  However, in spite of this commitment and  the presence of a high proportion of well‐qualified workers, skills gaps,  that is skills lacking in the current workforce, and skills shortages caused  by recruitment difficulties, are present in the sector.  There are also skills  gaps and shortages in the volunteer workforce

    Habitat Fragmentation, Variable Edge Effects, and the Landscape-Divergence Hypothesis

    Get PDF
    Edge effects are major drivers of change in many fragmented landscapes, but are often highly variable in space and time. Here we assess variability in edge effects altering Amazon forest dynamics, plant community composition, invading species, and carbon storage, in the world's largest and longest-running experimental study of habitat fragmentation. Despite detailed knowledge of local landscape conditions, spatial variability in edge effects was only partially foreseeable: relatively predictable effects were caused by the differing proximity of plots to forest edge and varying matrix vegetation, but windstorms generated much random variability. Temporal variability in edge phenomena was also only partially predictable: forest dynamics varied somewhat with fragment age, but also fluctuated markedly over time, evidently because of sporadic droughts and windstorms. Given the acute sensitivity of habitat fragments to local landscape and weather dynamics, we predict that fragments within the same landscape will tend to converge in species composition, whereas those in different landscapes will diverge in composition. This ‘landscape-divergence hypothesis’, if generally valid, will have key implications for biodiversity-conservation strategies and for understanding the dynamics of fragmented ecosystems

    The composition of meteoroids impacting LDEF

    Get PDF
    So far we have completed an initial scanning electron microscopy (SEM) survey of craters on the exterior of the Long Duration Exposure Facility (LDEF) in the 100 micron to 1mm size range and done some quantitative analysis. In typical craters, the residue appears to be a mixture of glass and FeNi and sulfide beads with an overall chondritic elemental composition. In less than 10 percent of the craters, there is a substantial amount of meteoroid debris that also contains unmelted mineral grains. The relatively high abundance of forsterite and enststite among these irregular grains suggests that a high melting point probably plays a role in surviving impact without melting

    Rerouting a major Indonesian mining road to spare nature and reduce development costs

    Get PDF
    Road-infrastructure projects are expanding rapidly worldwide while penetrating into previously undisturbed forests. In Sumatra, Indonesia, a planned 88-km-long mining road for transporting coal would imperil the Harapan Forest, the island's largest surviving tract of lowland rainforest. Such roads often lead to increased forest encroachment and illegal logging, fires, poaching, and mining. To evaluate the potential impact of the proposed road, we first manually mapped all existing roads inside and around the Harapan Forest using remote-sensing imagery. We then calculated the expected increase in forest loss from three proposed mining-road routes using a metric based on travel-time mapping. Finally, we used least-cost-path analyses to identify new routes for the road that would minimize forest disruption and road-construction costs. We found that road density inside and nearby the Harapan Forest is already 3-4 times higher than official data sources indicate. Based on our analyses, each of the three proposed mining-road routes would lead to 3,000-4,300 ha of additional forest loss from human encroachment plus another 424 ha lost from road construction itself. We propose new routes for the mining road that would result in up to 3,321 ha less forest loss with markedly lower construction costs than any other planned route. We recommend approaches such as ours, using least-cost-path analysis, to minimize the environmental and financial costs of major development projects

    Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient

    Get PDF
    We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide

    Preliminary analysis of LDEF instrument A0187-1: Chemistry of Micrometeoroids Experiment

    Get PDF
    The Chemistry of Micrometeoroids Experiment (CME) exposed approximately 0.8 sq. m of gold on the Long Duration Exposure Facility's (LDEF's) trailing edge (location A03) and approximately 1.1 sq. m of aluminum in the forward-facing A11 location. The most significant results to date relate to the discovery of unmelted pyroxene and olivine fragments associated with natural cosmic dust impacts. The latter are sufficiently large for detailed phase studies, and they serve to demonstrate that recovery of unmelted dust fragments is a realistic prospect for further dust experiments that will employ more advanced collector media. We also discovered that man-made debris impacts occur on the LDEF's trailing edge with substantially higher frequency than expected, suggesting that orbital debris in highly elliptical orbits may have been somewhat underestimated

    Effects of oil palm and human presence on activity patterns of terrestrial mammals in the Colombian Llanos

    Get PDF
    The ability of animals to adjust their behaviour can influence how they respond to environmental changes and human presence. We quantified activity patterns of terrestrial mammals in oil palm plantations and native riparian forest in Colombia to determine if species exhibited behavioural changes depending on the type of habitat and the presence of humans. Despite the large sampling effort (12,403 camera-days), we were only able to examine the activity patterns of ten species in riparian forests and seven species in oil palm plantations, with four species (capybara, giant anteater, lesser anteater and common opossum) being represented by enough records (i.e. n > 20) in both oil palm and forest to allow robust comparisons. Only capybaras showed an apparent change in activity patterns between oil palm plantations and riparian forests, shifting from being crepuscular in forest to predominantly nocturnal inside oil palm plantations. Further, capybaras, giant anteaters and white-tailed deer appeared to modify their activities to avoid human presence inside oil palm plantations by increasing nocturnality (temporal overlap Δ ^ ranged from 0.13 to 0.36), whereas jaguarundi had high overlap with human activities [Δ ^ =0.85 (0.61–0.90)]. Species pair-wise analysis within oil palm revealed evidence for temporal segregation between species occupying the same trophic position (e.g. foxes and jaguarundi), whereas some predators and their prey (e.g. ocelots and armadillos) had high overlaps in temporal activity patterns as might be expected. Our findings shed light on the potential behavioural adaptation of mammals to anthropogenic landscapes, a feature not captured in traditional studies that focus on measures such as species richness or abundance

    Land management strategies can increase oil palm plantation use by some terrestrial mammals in Colombia

    Get PDF
    While the conservation role of remaining natural habitats in anthropogenic landscapes is clear, the degree to which agricultural matrices impose limitations to animal use is not well understood, but vital to assess species’ resilience to land use change. Using an occupancy framework, we evaluated how oil palm plantations affect the occurrence and habitat use of terrestrial mammals in the Colombian Llanos. Further, we evaluated the effect of undergrowth vegetation and proximity to forest on habitat use within plantations. Most species exhibited restricted distributions across the study area, especially in oil palm plantations. Habitat type strongly influenced habitat use of four of the 12 more widely distributed species with oil palm negatively affecting species such as capybara and naked-tailed armadillo. The remaining species showed no apparent effect of habitat type, but oil palm and forest use probabilities varied among species. Overall, generalist mesocarnivores, white-tailed deer, and giant anteater were more likely to use oil palm while the remaining species, including ocelot and lesser anteater, showed preferences for forest. Distance to nearest forest had mixed effects on species habitat use, while understory vegetation facilitated the presence of species using oil palm. Our findings suggest that allowing undergrowth vegetation inside plantations and maintaining nearby riparian corridors would increase the likelihood of terrestrial mammals’ occurrence within oil palm landscapes

    Climate Change Affects Reproductive Phenology in Lianas of Australia’s Wet Tropics

    Get PDF
    Lianas are increasing in abundance in many tropical forests. This increase can alter forest structure and decrease both carbon storage and tree diversity via antagonistic relationships between lianas and their host trees. Climate change is postulated as an underlying driver of increasing liana abundances, via increases in dry-season length, forest-disturbance events, and atmospheric CO2 concentrations; all factors thought to favour lianas. However, the impact of climate change on liana reproductive phenology, an underlying determinant of liana abundance, has been little studied, particularly outside of Neotropical forests. Over a 15-year period (2000–2014), we examined the phenological patterns of a liana community in intact rainforests of the Wet Tropics bioregion of Australia; a World Heritage Area and hotspot of floral diversity. Specifically, we assessed (1) flowering and fruiting patterns of liana species; (2) potential climate drivers of flowering and fruiting activity; and (3) the influence of El Niño-related climatic disturbances on liana phenology. We found that flowering and fruiting of the studied liana species increased over time. Liana reproduction, moreover, rose in apparent response to higher temperatures and reduced rainfall. Finally, we found flowering and fruiting of the liana species increased following El Niño events. These results suggest that liana reproduction and abundance are likely to increase under predicted future climate regimes, with potentially important impacts on the survival, growth, and reproduction of resident trees and thus the overall health of Australian tropical rainforests
    corecore