2,354 research outputs found

    Diazo transfer for azido-functional surfaces

    Get PDF
    Preparation of azido-functionalized polymers is gaining increasing attention. We wish to report an innovative, novel strategy for azido functionalization of polymeric materials, coupling plasma technology and solution processed diazo transfer reactions. This novel approach allows the azido group to be introduced downstream of the material preparation, thus preserving its physicochemical and mechanical characteristics, which can be tailored a priori according to the desired application. The whole process involves the surface plasma functionalization of a material with primary amino groups, followed by a diazo transfer reaction, which converts the amino functionalities into azido groups that can be exploited for further chemoselective reactions. The diazo transfer reaction is performed in a heterogeneous phase, where the azido group donor is in solution. Chemical reactivity of the azido functionalities was verified by subsequent copper-catalyzed azide-alkyne cycloaddition

    Nanoparticle-based receptors mimic protein-ligand recognition

    Get PDF
    The self-assembly of a monolayer of ligands on the surface of noble metal nanoparticles dictates the fundamental nanoparticle\u2019s behavior and its functionality. In this combined computational\u2013experimental study, we analyze the structure, organization, and dynamics of functionalized coating thiols in monolayer-protected gold nanoparticles (AuNPs). We explain how functionalized coating thiols self-organize through a delicate and somehow counterintuitive balance of interactions within the monolayer itself and with the solvent. We further describe how the nature and plasticity of these interactions modulate nanoparticle-based chemosensing. Importantly, we found that self-organization of coating thiols can induce the formation of binding pockets in AuNPs. These transient cavities can accommodate small molecules, mimicking protein-ligand recognition, which may explain the selectivity and sensitivity observed for different organic analytes in NMR chemosensing experiments. Thus, our findings advocate for the rational design of tailored coating groups to form specific recognition binding sites on monolayer-protected AuNPs

    Eicosapentaenoic acid induces DNA demethylation in carcinoma cells through a TET1-dependent mechanism

    Get PDF
    In cancer cells, global genomic hypomethylation is found together with localized hypermethylation of CpG islands within the promoters and regulatory regions of silenced tumor suppressor genes. Demethylating agents may reverse hypermethylation, thus promoting gene re-expression. Unfortunately, demethylating strategies are not efficient in solid tumor cells. DNA demethylation is mediated by ten-eleven translocation enzymes (TETs). They sequentially convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), which is associated with active transcription; 5-formylcytosine; and finally, 5-carboxylcytosine. Although α-linolenic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid, the major n-3 polyunsaturated fatty acids, have anti-cancer effects, their action, as DNA-demethylating agents, has never been investigated in solid tumor cells. Here, we report that EPA demethylates DNA in hepatocarcinoma cells. EPA rapidly increases 5hmC on DNA, inducing p21Waf1/Cip1 gene expression, which slows cancer cell-cycle progression. We show that the underlying molecular mechanism involves TET1. EPA simultaneously binds peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor α (RXRα), thus promoting their heterodimer and inducing a PPARγ-TET1 interaction. They generate a TET1-PPARγ-RXRα protein complex, which binds to a hypermethylated CpG island on the p21 gene, where TET1 converts 5mC to 5hmC. In an apparent shuttling motion, PPARγ and RXRα leave the DNA, whereas TET1 associates stably. Overall, EPA directly regulates DNA methylation levels, permitting TET1 to exert its anti-tumoral function.-Ceccarelli, V., Valentini, V., Ronchetti, S., Cannarile, L., Billi, M., Riccardi, C., Ottini, L., Talesa, V. N., Grignani, F., Vecchini, A., Eicosapentaenoic acid induces DNA demethylation in carcinoma cells through a TET1-dependent mechanism

    Elastography in HCV patients

    Get PDF
    Summary Introduction:  Liver fibrosis (LB) assessment plays an important role in hepatology. A common characteristic of all chronic liver diseases is the occurrence and progression of fibrosis towards cirrhosis. Besides its plain interest for prognosis purposes, determining the fibrosis reveals the natural history of the disease and the risk factors associated with its progression to guide the antifibrotic action of different treatments. Discussion:  Today, in clinical practice there are three available methods for the evaluation of LB. Biopsy, which is still considered as the 'gold standard' method. Serological markers and their mathematical combination are suggested in the last years in alternative to LB. More recently, transient elastography (TE) was proposed. TE is a simple and noninvasive method for measuring liver stiffness. This technique is based on the progression speed of an elastic shear wave within the liver. Conclusions:  Currently, there are just a few studies capable of evaluating the TE effectiveness in chronic liver diseases, mainly in patients infected with hepatitis C virus (HCV). Its application must also be studied in the monitoring of patients suffering from chronic HCV infection and subjected to a treatment that can modify their degree of liver fibrosis. The results of TE must be interpreted according to the clinical background of the specialist

    Metacognition as a predictor of improvements in personality disorders

    Get PDF
    Personality Disorders (PDs) are particularly hard to treat and treatment drop-out rates are high. Several authors have agreed that psychotherapy is more successful when it focuses on the core of personality pathology. For this reason, therapists dealing with PDs need to understand the psychopathological variables that characterize this pathology and exactly what contributes to maintaining psychopathological processes. Moreover, several authors have noted that one key problem that characterizes all PDs is an impairment in understanding mental states - here termed metacognition - which could also be responsible for therapy failures. Unfortunately, a limited number of studies have investigated the role of mentalization in the process of change during psychotherapy. In this paper, we assume that poor metacognition corresponds to a core element of the general pathology of personality, impacts a series of clinical variables, generates symptoms and interpersonal problems, and causes treatment to be slower and less effective. We explored whether changes in metacognition predicted an improvement among different psychopathological variables characterizing PDs; 193 outpatients were treated at the Third Center of Cognitive Psychotherapy in Rome, Italy, and followed a structured path tailored for the different psychopathological variables that emerged from a comprehensive psychodiagnostic assessment that considered patients' symptoms, metacognitive abilities, interpersonal relationships, personality psychopathology, and global functioning. The measurements were repeated after a year of treatment. The results showed that changes in metacognitive abilities predicted improvements in the analyzed variable

    Optimisation of a reduced volume PCR amplification for PowerPlex® Fusion kit using FTA™ cards and generation of population genetic data for Brunei population

    Get PDF
    The commercial PowerPlex® Fusion kit is an autosomal STR multiplex kit that has high discrimination power and is more informative in forensic, paternity and relationship‐testing cases. Key features of this multiplex system are the possibility to direct amplify FTA™ card punches as well as non‐FTA cards and commonly used swabs; optimised inhibitor tolerance and high sensitivity generating full profiles from as little as 100 pg of human DNA. This study focused on the optimization of performance variables such as FTA™ punch sizes, reduced reaction volumes, and FTA™ purification reagent aiming to increase the analytical sensitivity, decrease the sample consumption and cost effectiveness. LOD and LOQ values demonstrated high sensitivity of the PowerPlex® Fusion system. In addition, population databases of Brunei Malay and Chinese from the Brunei Darussalam were established, and parameters of forensic importance were calculated. Overall, the forensic parameters indicated an enhanced utility of the PowerPlex® Fusion kit for forensic evidence analysis and paternity testing in Brunei Malay and Chinese populations

    The Proto-Oncogene LRF Is under Post-Transcriptional Control of MiR-20a: Implications for Senescence

    Get PDF
    MicroRNAs (miRNAs) are short 20–22 nucleotide RNA molecules that act as negative regulators of gene expression via translational repression: they have been shown to play a role in development, proliferation, stress response, and apoptosis. The transcriptional regulator LRF (Leukemia/lymphoma Related Factor) has been shown to prevent p19ARF transcription and consequently to inhibit senescence in mouse embryonic fibroblasts (MEF). Here we report, for the first time, that LRF is post-transcriptionally regulated by miR-20a. Using a gene reporter assay, direct interaction of miR-20a with the LRF 3′UTR is demonstrated. To validate the interaction miR-20a/3′UTR LRF miR-20a was over-expressed, either by transient transfection or retroviral infection, in wild type mouse embryo fibroblasts and in LRF-null MEF derived from LRF knock-out mice. We observed LRF decrease, p19ARF increase, inhibition of cell proliferation and induction of senescence. The comparison of miR-20a activity in wt and LRF-null MEF indicates that LRF is the main mediator of the miR-20a-induced senescence and that other targets are cooperating. As LRF down-regulation/p19ARF induction is always accompanied by E2F1 down-regulation and increase of p16, we propose that all these events act in synergy to accomplish miR-20a-induced senescence in MEF. Senescence has been recently revaluated as a tumor suppressor mechanism, alternative to apoptosis; from this point of view the discovery of new physiological “senescence inducer” appears to be promising as this molecule could be used as anticancer drug

    Mutation in a conserved motif next to the insulin receptor key autophosphorylation sites de-regulates kinase activity and impairs insulin action.

    Get PDF
    We have recently reported two non-insulin-dependent diabetic patients exhibiting a heterozygous point mutation (R1152-Q) next to the key tyrosine autophosphorylation sites (Y1146, Y1150, Y1151) of the insulin receptor. In the present study, we demonstrate that the Q1152 mutation alters a previously unrecognized consensus sequence in the insulin receptor family of tyrosine kinases. To define the effect of this alteration on insulin receptor function, the mutant insulin receptor (Q1152) was constructed and overexpressed in NIH-3T3 cells. In spite of normal insulin binding, "in vivo" and "in vitro" autophosphorylation as well as transphosphorylation by the wild-type receptor (WT) were deficient in Q1152 as compared with the transfected WT receptors. Insulin-stimulated kinase activity toward poly(Glu, Tyr) 4:1 and the endogenous substrates p120 and p175 were also impaired in Q1152. However, insulin-independent kinase activity of Q1152 was 2-5-fold higher than that of WT. While insulin stimulated 2-deoxyglucose uptake and glycogen synthase activity in WT-transfected cells with a sensitivity proportional to receptor number, no insulin stimulation was observed in Q1152 cells. Similar to the kinase, insulin-independent glycogen synthase activity and 2-deoxyglucose uptake were 2-fold higher in Q1152 than in either WT or parental cells. We conclude that the Q1152 mutation deregulates insulin receptor kinase and generates insulin insensitivity in cells. Alterations in this highly conserved region of the insulin receptor may contribute to non-insulin dependent diabetes mellitin pathogenesis in humans

    Structure and dynamics of the acyl chains in the membrane trafficking and enzymatic processing of lipids

    Get PDF
    The regulatory chemical mechanisms of lipid trafficking and degradation are involved in many pathophysiological processes, being implicated in severe pain, inflammation, and cancer. In addition, the processing of lipids is also relevant for industrial and environmental applications. However, there is poor understanding of the chemical features that control lipid membrane trafficking and allow lipid-degrading enzymes to efficiently select and hydrolyze specific fatty acids from a complex cellular milieu of bioactive lipids. This is particularly true for lipid acyl chains, which have diverse structures that can critically affect the many complex reactions needed to elongate, desaturate, or transport fatty acids. Building upon our own contributions in this field, we will discuss how molecular simulations, integrated with experimental evidence, have revealed that the structure and dynamics of the lipid tail are actively involved in modulating membrane trafficking at cellular organelles, and enzymatic reactions at cell membranes. Further evidence comes from recent crystal structures of lipid receptors and remodeling enzymes. Taken together, these recent works have identified those structural features of the lipid acyl chain that are crucial for the regioselectivity and stereospecificity of essential desaturation reactions. In this context, we will first illustrate how atomistic and coarse- grained simulations have elucidated the structure–function relationships between the chemical composition of the lipid’s acyl chains and the molecular properties of lipid bilayers. Particular emphasis will be given to the prominent chemical role of the number of double carbon–carbon bonds along the lipid acyl chain, that is, discriminating between saturated, monounsaturated, and polyunsaturated lipids. Different levels of saturation in fatty acid molecules dramatically influence the biophysical properties of lipid assemblies and their interaction with proteins. We will then discuss the processing of lipids by membrane-bound enzymes. Our focus will be on lipids such as anandamide and 2-arachidonoylglycerol. These are the main molecules that act as neurotransmitters in the endocannabinoid system. Specifically, recent findings indicate a crucial interplay between the level of saturation of the lipid tail, its energetically and sterically favored conformations, and the hydrophobic accessory cavities in lipid-degrading enzymes, which help form catalytically active conformations of the selected substrate. This Account will emphasize how the specific chemical structure of acyl chains affects the molecular mechanisms for modulating membrane trafficking and selective hydrolysis. The results examined here show that, by using molecular simulations to investigate lipid plasticity and substrate flexibility, researchers can enrich their interpretation of experimental results about the structure–function relationships of lipids. This could positively impact chemical and biological studies in the field and ultimately support protein engineering studies and structure-based drug discovery to target lipid-processing enzymes

    Complete Metabolic Response with Recanalization of Portal Vein Tumor Thrombosis after Sunitinib in a Patient with Advanced Hepatocellular Carcinoma

    Get PDF
    The prognosis of patients with advanced hepatocellular carcinoma (HCC) is very poor. The outcome of these patients is particularly bleak when the disease is complicated by portal vein tumor thrombosis (PVTT), since the increased portal pressure often causes serious gastrointestinal bleedings. Before the introduction of sorafenib (SOR), a tyrosine kinase inhibitor, no effective treatment was available for patients with advanced disease. SOR is now considered the standard treatment even for patients with tumor thrombosis, although the well-known interference between tyrosine kinase inhibitors and the coagulation pathway calls for caution against their use in this setting. Here, we report the case of a 74-year-old male patient with advanced HCC and PVTT treated with sunitinib (SUN), another multikinase inhibitor. During the third cycle, our patient experienced a life-threatening hematemesis with hemorrhagic shock that required intensive care treatment and SUN discontinuation. However, he completely recovered, and the PET/CT scan performed 1 year after the adverse effect demonstrated no evidence of the tumor together with portal vein recanalization. The short course of SUN causing both tumor response and gastrointestinal bleeding warrants further studies on the effectiveness of SUN in this setting as well as on the duration of treatment with multikinase inhibitors in patients with tumor thrombosis
    corecore