47 research outputs found

    Cordon-Bleu Is an Actin Nucleation Factor and Controls Neuronal Morphology

    Get PDF
    SummaryDespite the wealth of different actin structures formed, only two actin nucleation factors are well established in vertebrates: the Arp2/3 complex and formins. Here, we describe a further nucleator, cordon-bleu (Cobl). Cobl is a brain-enriched protein using three Wiskott-Aldrich syndrome protein homology 2 (WH2) domains for actin binding. Cobl promotes nonbundled, unbranched filaments. Filament formation relies on barbed-end growth and requires all three Cobl WH2 domains and the extended linker L2. We suggest that the nucleation power of Cobl is based on the assembly of three actin monomers in cross-filament orientation. Cobl localizes to sites of high actin dynamics and modulates cell morphology. In neurons, induction of both neurites and neurite branching is dramatically increased by Cobl expression—effects that critically depend on Cobl's actin nucleation ability. Correspondingly, Cobl depletion results in decreased dendritic arborization. Thus, Cobl is an actin nucleator controlling neuronal morphology and development

    Utility of a next‐generation framework for assessment of genomic damage: A case study using the pharmaceutical drug candidate etoposide

    Get PDF
    We present a hypothetical case study to examine the use of a next-generation framework developed by the Genetic Toxicology Technical Committee of the Health and Environmental Sciences Institute for assessing the potential risk of genetic damage from a pharmaceutical perspective. We used etoposide, a genotoxic carcinogen, as a representative pharmaceutical for the purposes of this case study. Using the framework as guidance, we formulated a hypothetical scenario for the use of etoposide to illustrate the application of the framework to pharmaceuticals. We collected available data on etoposide considered relevant for assessment of genetic toxicity risk. From the data collected, we conducted a quantitative analysis to estimate margins of exposure (MOEs) to characterize the risk of genetic damage that could be used for decision-making regarding the predefined hypothetical use. We found the framework useful for guiding the selection of appropriate tests and selecting relevant endpoints that reflected the potential for genetic damage in patients. The risk characterization, presented as MOEs, allows decision makers to discern how much benefit is critical to balance any adverse effect(s) that may be induced by the pharmaceutical. Interestingly, pharmaceutical development already incorporates several aspects of the framework per regulations and health authority expectations. Moreover, we observed that quality dose response data can be obtained with carefully planned but routinely conducted genetic toxicity testing. This case study demonstrates the utility of the next-generation framework to quantitatively model human risk based on genetic damage, as applicable to pharmaceuticals

    Opportunities to integrate new approaches in genetic toxicology: An ILSI-HESI workshop report

    Get PDF
    Genetic toxicity tests currently used to identify and characterize potential human mutagens and carcinogens rely on measurements of primary DNA damage, gene mutation, and chromosome damage in vitro and in rodents. The International Life Sciences Institute Health and Environmental Sciences Institute (ILSI-HESI) Committee on the Relevance and Follow-up of Positive Results in In Vitro Genetic Toxicity Testing held an April 2012 Workshop in Washington, DC, to consider the impact of new understanding of biology and new technologies on the identification and characterization of genotoxic substances, and to identify new approaches to inform more accurate human risk assessment for genetic and carcinogenic effects. Workshop organizers and speakers were from industry, academe, and government. The Workshop focused on biological effects and technologies that would potentially yield the most useful information for evaluating human risk of genetic damage. Also addressed was the impact that improved understanding of biology and availability of new techniques might have on genetic toxicology practices. Workshop topics included (1) alternative experimental models to improve genetic toxicity testing, (2) Biomarkers of epigenetic changes and their applicability to genetic toxicology, and (3) new technologies and approaches. The ability of these new tests and technologies to be developed into tests to identify and characterize genotoxic agents; to serve as a bridge between in vitro and in vivo rodent, or preferably human, data; or to be used to provide dose response information for quantitative risk assessment was also addressed. A summary of the workshop and links to the scientific presentations are provided.International Life Sciences Institute/Health and Environmental Sciences Institute Committe

    Modelers' Perception of Mathematical Modeling in Epidemiology: A Web-Based Survey

    Get PDF
    International audienceBackground: Mathematical modeling in epidemiology (MME) is being used increasingly. However, there are many uncertainties in terms of definitions, uses and quality features of MME. Methodology/Principal Findings: To delineate the current status of these models, a 10-item questionnaire on MME was devised. Proposed via an anonymous internet-based survey, the questionnaire was completed by 189 scientists who had published in the domain of MME. A small minority (18%) of respondents claimed to have in mind a concise definition of MME. Some techniques were identified by the researchers as characterizing MME (e.g. Markov models), while others–at the same level of sophistication in terms of mathematics–were not (e.g. Cox regression). The researchers' opinions were also contrasted about the potential applications of MME, perceived as higly relevant for providing insight into complex mechanisms and less relevant for identifying causal factors. The quality criteria were those of good science and were not related to the size and the nature of the public health problems addressed. Conclusions/Significance: This study shows that perceptions on the nature, uses and quality criteria of MME are contrasted, even among the very community of published authors in this domain. Nevertheless, MME is an emerging discipline in epidemiology and this study underlines that it is associated with specific areas of application and methods. The development of this discipline is likely to deserve a framework providing recommendations and guidance at various steps of the studies, from design to report

    The effect of extreme spring weather on body condition and stress physiology in Lapland longspurs and white-crowned sparrows breeding in the Arctic

    Get PDF
    AbstractClimate change is causing rapid shifts in temperature while also increasing the frequency, duration, and intensity of extreme weather. In the northern hemisphere, the spring of 2013 was characterized as extreme due to record high snow cover and low temperatures. Studies that describe the effects of extreme weather on phenology across taxa are limited while morphological and physiological responses remain poorly understood. Stress physiology, as measured through baseline and stress-induced concentrations of cortisol or corticosterone, has often been studied to understand how organisms respond to environmental stressors. We compared body condition and stress physiology of two long-distance migrants breeding in low arctic Alaska – the white-crowned sparrow (Zonotrichia leucophrys) and Lapland longspur (Calcarius lapponicus) – in 2013, an extreme weather year, with three more typical years (2011, 2012, and 2014). The extended snow cover in spring 2013 caused measureable changes in phenology, body condition and physiology. Arrival timing for both species was delayed 4–5days compared to the other three years. Lapland longspurs had reduced fat stores, pectoralis muscle profiles, body mass, and hematocrit levels, while stress-induced concentrations of corticosterone were increased. Similarly, white-crowned sparrows had reduced pectoralis muscle profiles and hematocrit levels, but in contrast to Lapland longspurs, had elevated fat stores and no difference in mass or stress physiology relative to other study years. An understanding of physiological mechanisms that regulate coping strategies is of critical importance for predicting how species will respond to the occurrence of extreme events in the future due to global climate change

    The stress response is attenuated during inclement weather in parental, but not in pre-parental, Lapland longspurs (Calcarius lapponicus) breeding in the Low Arctic

    Get PDF
    AbstractBirds breeding at high latitudes can be faced with extreme weather events throughout the breeding season. In response to environmental perturbations, vertebrates activate the hypothalamic-pituitary-adrenal (HPA) axis and synthesize corticosterone, which promotes changes in behavior and physiology to help the animal survive. The parental care hypothesis suggests that the HPA axis activity should be downregulated during the parental stage of breeding to prevent nest abandonment. However, it is unknown what happens to HPA axis activity in response to severe weather at the transition from the pre-parental to parental stages of breeding. We sampled baseline corticosterone levels and the time course of corticosterone elevation over 60min of restraint stress and assessed body condition and fat stores in Lapland longspurs (Calcarius lapponicus) breeding in the Low Arctic in the presence and absence of snowstorms. The results showed that during the pre-parental stage, HPA axis activity was up-regulated in response to snowstorms, with corticosterone levels continuing to increase through 60min of restraint. However, once birds were parental, HPA axis activity was unaffected by snowstorms and levels peaked at 10min. Fat levels and body condition did not change in response to snowstorms but fat levels declined in males during the pre-parental stage. These data suggest that the parental care hypothesis can be applied to severe storm events; parental birds restrained the activity of the HPA axis, likely to focus on the reproductive effort that is already underway, while pre-parental birds greatly upregulated HPA axis activity in response to snowstorms to maximize self-preservation

    Clinical Considerations for Routine Auditory and Vestibular Monitoring in Patients with Cystic Fibrosis

    Get PDF
    Purpose Specific classes of antibiotics, such as aminoglycosides, have well-established adverse events producing permanent hearing loss, tinnitus, and balance and/or vestibular problems (i.e., ototoxicity). Although these antibiotics are frequently used to treat pseudomonas and other bacterial infections in patients with cystic fibrosis (CF), there are no formalized recommendations describing approaches to implementation of guideline adherent ototoxicity monitoring as part of CF clinical care. Method This consensus statement was developed by the International Ototoxicity Management Working Group (IOMG) Ad Hoc Committee on Aminoglycoside Antibiotics to address the clinical need for ototoxicity management in CF patients treated with known ototoxic medications. These clinical protocol considerations were created using consensus opinion from a community of international experts and available evidence specific to patients with CF, as well as published national and international guidelines on ototoxicity monitoring. Results The IOMG advocates four clinical recommendations for implementing routine and guideline adherent ototoxicity management in patients with CF. These are (a) including questions about hearing, tinnitus, and balance/vestibular problems as part of the routine CF case history for all patients; (b) utilizing timely point-of-care measures; (c) establishing a baseline and conducting posttreatment evaluations for each course of intravenous ototoxic drug treatment; and (d) repeating annual hearing and vestibular evaluations for all patients with a history of ototoxic antibiotic exposure. Conclusion Increased efforts for implementation of an ototoxicity management program in the CF care team model will improve identification of ototoxicity signs and symptoms, allow for timely therapeutic follow-up, and provide the clinician and patient an opportunity to make an informed decision about potential treatment modifications to minimize adverse events

    The genetic determinants of recurrent somatic mutations in 43,693 blood genomes

    Get PDF
    Nononcogenic somatic mutations are thought to be uncommon and inconsequential. To test this, we analyzed 43,693 National Heart, Lung and Blood Institute Trans-Omics for Precision Medicine blood whole genomes from 37 cohorts and identified 7131 non-missense somatic mutations that are recurrently mutated in at least 50 individuals. These recurrent non-missense somatic mutations (RNMSMs) are not clearly explained by other clonal phenomena such as clonal hematopoiesis. RNMSM prevalence increased with age, with an average 50-year-old having 27 RNMSMs. Inherited germline variation associated with RNMSM acquisition. These variants were found in genes involved in adaptive immune function, proinflammatory cytokine production, and lymphoid lineage commitment. In addition, the presence of eight specific RNMSMs associated with blood cell traits at effect sizes comparable to Mendelian genetic mutations. Overall, we found that somatic mutations in blood are an unexpectedly common phenomenon with ancestry-specific determinants and human health consequences

    Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed

    Get PDF
    Genetic studies on telomere length are important for understanding age-related diseases. Prior GWAS for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally-diverse individuals (European, African, Asian and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n=109,122 individuals. We identified 59 sentinel variants (p-value OBFC1indicated the independent signals colocalized with cell-type specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated our TL polygenic trait scores (PTS) were associated with increased risk of cancer-related phenotypes
    corecore