428 research outputs found
A Point Mutation in a Herpesvirus Co-Determines Neuropathogenicity and Viral Shedding
A point mutation in the DNA polymerase gene in equine herpesvirus type 1
(EHV-1) is one determinant for the development of neurological disease in
horses. Three recently conducted infection experiments using domestic horses
and ponies failed to detect statistically significant differences in viral
shedding between the neuropathogenic and non-neuropathogenic variants. These
results were interpreted as suggesting the absence of a consistent selective
advantage of the neuropathogenic variant and therefore appeared to be
inconsistent with a systematic increase in the prevalence of neuropathogenic
strains. To overcome potential problems of low statistical power related to
small group sizes in these infection experiments, we integrated raw data from
all three experiments into a single statistical analysis. The results of this
combined analysis showed that infection with the neuropathogenic EHV-1 variant
led to a statistically significant increase in viral shedding. This finding is
consistent with the idea that neuropathogenic strains could have a selective
advantage and are therefore systematically increasing in prevalence in
domestic horse populations. However, further studies are required to determine
whether a selective advantage indeed exists for neuropathogenic strains
Preconditioning of murine mesenchymal stem cells synergistically enhanced immunomodulation and osteogenesis
Abstract
Background
Mesenchymal stem cells (MSCs) are capable of immunomodulation and tissue regeneration, highlighting their potential translational application for treating inflammatory bone disorders. MSC-mediated immunomodulation is regulated by proinflammatory cytokines and pathogen-associated molecular patterns such as lipopolysaccharide (LPS). Previous studies showed that MSCs exposed to interferon gamma (IFN-γ) and the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) synergistically suppressed T-cell activation.
Methods
In the current study, we developed a novel preconditioning strategy for MSCs using LPS plus TNF-α to optimize the immunomodulating ability of MSCs on macrophage polarization.
Results
Preconditioned MSCs enhanced anti-inflammatory M2 macrophage marker expression (Arginase 1 and CD206) and decreased inflammatory M1 macrophage marker (TNF-α/IL-1Ra) expression using an in-vitro coculture model. Immunomodulation of MSCs on macrophages was significantly increased compared to the combination of IFN-γ plus TNF-α or single treatment controls. Increased osteogenic differentiation including alkaline phosphate activity and matrix mineralization was only observed in the LPS plus TNF-α preconditioned MSCs. Mechanistic studies showed that increased prostaglandin E2 (PGE2) production was associated with enhanced Arginase 1 expression. Selective cyclooxygenase-2 inhibition by Celecoxib decreased PGE2 production and Arginase 1 expression in cocultured macrophages.
Conclusions
The novel preconditioned MSCs have increased immunomodulation and bone regeneration potential and could be applied to the treatment of inflammatory bone disorders including periprosthetic osteolysis, fracture healing/nonunions, and osteonecrosis
Neonatal Immunization with a Single IL-4/Antigen Dose Induces Increased Antibody Responses after Challenge Infection with Equine Herpesvirus Type 1 (EHV-1) at Weanling Age
Neonatal foals respond poorly to conventional vaccines. These vaccines typically target T-helper (Th) cell dependent B-cell activation. However, Th2-cell immunity is impaired in foals during the first three months of life. In contrast, neonatal basophils are potent interleukin-4 (IL-4) producers. The purpose of this study was to develop a novel vaccine triggering the natural capacity of neonatal basophils to secrete IL-4 and to evaluate if vaccination resulted in B-cell activation and antibody production against EHV-1 glycoprotein C (gC). Neonatal vaccination was performed by oral biotinylated IgE (IgE-bio) treatment at birth followed by intramuscular injection of a single dose of streptavidin-conjugated gC/IL-4 fusion protein (Sav-gC/IL-4) for crosslinking of receptor-bound IgE-bio (group 1). Neonates in group 2 received the intramuscular Sav-gC/IL-4 vaccine only. Group 3 remained non-vaccinated at birth. After vaccination, gC antibody production was not detectable. The ability of the vaccine to induce protection was evaluated by an EHV-1 challenge infection after weaning at 7 months of age. Groups 1 and 2 responded to EHV-1 infection with an earlier onset and overall significantly increased anti-gC serum antibody responses compared to control group 3. In addition, group 1 weanlings had a decreased initial fever peak after infection indicating partial protection from EHV-1 infection. This suggested that the neonatal vaccination induced a memory B-cell response at birth that was recalled at weanling age after EHV-1 challenge. In conclusion, early stimulation of neonatal immunity via the innate arm of the immune system can induce partial protection and increased antibody responses against EHV-1.Funding for this project was provided by the Harry M. Zweig Memorial Fund for Equine Research at Cornell University ‘A Novel Strategy to Boost Antibody Production to EHV-1 in Neonates’ (http://vet.cornell.edu/research/Zweig/). Monoclonal antibody development for horse cell surface markers and cytokines was supported by USDA grant #2005-01812 ‘The US Veterinary Immune Reagent Network’ and #2015-67015-23072 ‘Equine Immune Reagents: Development of monoclonal antibodies to improve the analysis of immunity in horses’ (https://nifa.usda.gov/).Peer Reviewe
Effect of Aging on the Macrophage Response to Titanium Particles
Macrophage-mediated inflammatory reaction to implant wear particles drives bone loss around total joint replacements (TJR). Although most TJR recipients are elderly, studies linking wear particle-activated macrophages and peri-implant osteolysis have not taken into account the multiple effects that aging has on the innate immune system and, in particular, on macrophages. To address this, we compared the wear particle responses of bone marrow macrophages obtained from young (2-month) and aged (18-month) mice. Macrophages were polarized to M0, M1, or M2 phenotypes in vitro, challenged with titanium particles, and their inflammatory response was characterized at multiple time points by quantitative reverse-transcription polymerase chain reaction and enzyme-linked immunosorbent assay. In addition, age-dependent changes in activation of transcription factor nuclear factor-kappa B were analyzed by a lentiviral vector-based luciferase reporter system. The particle stimulation experiment was further repeated using human primary macrophages isolated from blood donors of different ages. We found that the pro-inflammatory responses were generally higher in macrophages obtained from young mice, but differences between the age groups remained small and of uncertain biological significance. Noteworthily, M2 polarization effectively suppressed the particle-induced inflammation in both young and aged macrophages. These results suggest that aging of the innate immune system per se plays no significant role in the response of macrophages to titanium particles, whereas induction of M2 polarization appears a promising strategy to limit macrophage-mediated inflammation regardless of age.Peer reviewe
The deletion of the ORF1 and ORF71 genes reduces virulence of the neuropathogenic EHV-1 strain Ab4 without compromising host immunity in horses
The equine herpesvirus type 1 (EHV-1) ORF1 and ORF71 genes have immune modulatory effects in vitro. Experimental infection of horses using virus mutants with multiple deletions including ORF1 and ORF71 showed promise as vaccine candidates against EHV-1. Here, the combined effects of ORF1 and ORF71 deletions from the neuropathogenic EHV-1 strain Ab4 on clinical disease and host immune response were further explored. Three groups of EHV-1 naïve horses were experimentally infected with the ORF1/71 gene deletion mutant (Ab4ΔORF1/71), the parent Ab4 strain, or remained uninfected. In comparison to Ab4, horses infected with Ab4ΔORF1/71 did not show the initial high fever peak characteristic of EHV-1 infection. Ab4ΔORF1/71 infection had reduced nasal shedding (1/5 vs. 5/5) and, simultaneously, decreased intranasal interferon (IFN)-α, interleukin (IL)-10 and soluble CD14 secretion. However, Ab4 and Ab4ΔORF1/71 infection resulted in comparable viremia, suggesting these genes do not regulate the infection of the mononuclear cells and subsequent viremia. Intranasal and serum anti-EHV-1 antibodies to Ab4ΔORF1/71 developed slightly slower than those to Ab4. However, beyond day 12 post infection (d12pi) serum antibodies in both virus-infected groups were similar and remained increased until the end of the study (d114pi). EHV-1 immunoglobulin (Ig) G isotype responses were dominated by short-lasting IgG1 and long-lasting IgG4/7 antibodies. The IgG4/7 response closely resembled the total EHV-1 specific antibody response. Ex vivo re-stimulation of PBMC with Ab4 resulted in IFN-γ and IL-10 secretion by cells from both infected groups within two weeks pi. Flow cytometric analysis showed that IFN-γ producing EHV-1-specific T-cells were mainly CD8+/IFN-γ+ and detectable from d32pi on. Peripheral blood IFN-γ+ T-cell percentages were similar in both infected groups, albeit at low frequency (~0.1%). In summary, the Ab4ΔORF1/71 gene deletion mutant is less virulent but induced antibody responses and cellular immunity similar to the parent Ab4 strain
Session 2A: \u3cem\u3eDeveloping Post-Incident Risk Communication Guidelines for Intentional Water Contamination Events\u3c/em\u3e
This panel will discuss a US EPA-funded research project intended to improve risk communication for post-incident decontamination and clearance activities associated with intentional contamination of a water system. The study incorporates two complementary methods conducted in successive phases. The recently-completed first phase included robust case study analyses of risk communication related to recent and significant contamination incidents. The second phase, which is currently underway, will identify ways in which disparate stakeholder groups in a metropolitan area differentially perceive risk and subsequent risk communication efforts
Oklahoma's dirty dozen: Unwanted invasive plants
The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311
A Point Mutation in a Herpesvirus Polymerase Determines Neuropathogenicity
Infection with equid herpesvirus type 1 (EHV-1) leads to respiratory disease, abortion, and neurologic disorders in horses. Molecular epidemiology studies have demonstrated that a single nucleotide polymorphism resulting in an amino acid variation of the EHV-1 DNA polymerase (N752/D752) is significantly associated with the neuropathogenic potential of naturally occurring strains. To test the hypothesis that this single amino acid exchange by itself influences neuropathogenicity, we generated recombinant viruses with differing polymerase sequences. Here we show that the N752 mutant virus caused no neurologic signs in the natural host, while the D752 virus was able to cause inflammation of the central nervous system and ataxia. Neurologic disease induced by the D752 virus was concomitant with significantly increased levels of viremia (p = 0.01), but the magnitude of virus shedding from the nasal mucosa was similar between the N752 and D752 viruses. Both viruses replicated with similar kinetics in fibroblasts and epithelial cells, but exhibited differences in leukocyte tropism. Last, we observed a significant increase (p < 0.001) in sensitivity of the N752 mutant to aphidicolin, a drug targeting the viral polymerase. Our results demonstrate that a single amino acid variation in a herpesvirus enzyme can influence neuropathogenic potential without having a major effect on virus shedding from infected animals, which is important for horizontal spread in a population. This observation is very interesting from an evolutionary standpoint and is consistent with data indicating that the N752 DNA pol genotype is predominant in the EHV-1 population, suggesting that decreased viral pathogenicity in the natural host might not be at the expense of less efficient inter-individual transmission
FlyBase at 25: looking to the future.
Since 1992, FlyBase (flybase.org) has been an essential online resource for the Drosophila research community. Concentrating on the most extensively studied species, Drosophila melanogaster, FlyBase includes information on genes (molecular and genetic), transgenic constructs, phenotypes, genetic and physical interactions, and reagents such as stocks and cDNAs. Access to data is provided through a number of tools, reports, and bulk-data downloads. Looking to the future, FlyBase is expanding its focus to serve a broader scientific community. In this update, we describe new features, datasets, reagent collections, and data presentations that address this goal, including enhanced orthology data, Human Disease Model Reports, protein domain search and visualization, concise gene summaries, a portal for external resources, video tutorials and the FlyBase Community Advisory Group
- …