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Abstract

The equine herpesvirus type 1 (EHV-1) ORF1 and ORF71 genes have immune modulatory

effects in vitro. Experimental infection of horses using virus mutants with multiple deletions

including ORF1 and ORF71 showed promise as vaccine candidates against EHV-1. Here, the

combined effects of ORF1 and ORF71 deletions from the neuropathogenic EHV-1 strain Ab4

on clinical disease and host immune response were further explored. Three groups of EHV-1

naïve horses were experimentally infected with the ORF1/71 gene deletion mutant

(Ab4ΔORF1/71), the parent Ab4 strain, or remained uninfected. In comparison to Ab4, horses

infected with Ab4ΔORF1/71 did not show the initial high fever peak characteristic of EHV-1

infection. Ab4ΔORF1/71 infection had reduced nasal shedding (1/5 vs. 5/5) and, simulta-

neously, decreased intranasal interferon (IFN)-α, interleukin (IL)-10 and soluble CD14 secre-

tion. However, Ab4 and Ab4ΔORF1/71 infection resulted in comparable viremia, suggesting

these genes do not regulate the infection of the mononuclear cells and subsequent viremia.

Intranasal and serum anti-EHV-1 antibodies to Ab4ΔORF1/71 developed slightly slower than

those to Ab4. However, beyond day 12 post infection (d12pi) serum antibodies in both virus-

infected groups were similar and remained increased until the end of the study (d114pi). EHV-1

immunoglobulin (Ig) G isotype responses were dominated by short-lasting IgG1 and long-last-

ing IgG4/7 antibodies. The IgG4/7 response closely resembled the total EHV-1 specific anti-

body response. Ex vivo re-stimulation of PBMC with Ab4 resulted in IFN-γ and IL-10 secretion

by cells from both infected groups within two weeks pi. Flow cytometric analysis showed that

IFN-γ producing EHV-1-specific T-cells were mainly CD8+/IFN-γ+ and detectable from d32pi

on. Peripheral blood IFN-γ+ T-cell percentages were similar in both infected groups, albeit at

low frequency (~0.1%). In summary, the Ab4ΔORF1/71 gene deletion mutant is less virulent

but induced antibody responses and cellular immunity similar to the parent Ab4 strain.
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Introduction

Equine herpesvirus type-1 (EHV-1) is highly prevalent in the equine population with most

horses becoming infected as juveniles and remaining latently infected for life [1]. Latently

infected horses act as a virus reservoir. EHV-1 spreads through respiratory secretions and

nose-to-nose contact or via fomites. EHV-1 first infects the respiratory epithelium, causing

fever and rhinopneumonitis. The virus quickly enters local lymphoid tissues, is spread systemi-

cally via a cell-associated viremia, and latency is established in neurons of the trigeminal gan-

glia [2,3]. Disease manifestations range from subclinical to severe respiratory infection,

abortion, neonatal foal death, or equine herpesvirus myeloencephalopathy (EHM) [1,4]. Arte-

riolar vasculitis and subsequent thrombosis and ischemia causes both the abortigenic and neu-

rologic manifestations [1, 5, 6]. The virus can be reactivated and shed during stress, and may

lead to any of the clinical manifestations [1, 7]. Moreover, previously exposed, susceptible

horses respond to experimental infection with EHV-1 similar to EHV-1 naïve horses [8].

Through lost time for training and competing, treatment, quarantine, abortion, and death,

EHV-1 has great medical and economic impact [1, 9]. In the past 20 years, the increased inci-

dence of morbidity and mortality due to the neurologic manifestation has prompted height-

ened biosecurity and resurgence in EHV-1 vaccine research [4, 10, 11].

A combination of humoral and cell mediated immunity is believed to be necessary to pro-

tect horses from severe clinical disease and to reduce viral shedding [12, 13]. Limiting viremia

is assumed to prevent severe disease outcomes, as viremia is associated with the spread of the

virus to vascular endothelial cells resulting in abortions or EHM [2, 6, 14, 15, 16]. Cell medi-

ated immunity is believed to be critical for clearance of virus-infected cells [2, 15, 16]. The lat-

ter is supported by the finding that increased numbers of EHV-1 specific cytotoxic T cell

(CTL) precursors correlated with protection from development of EHM upon experimental

challenge infection in older mares [17]. In addition, EHV-1 specific interferon (IFN)-γ pro-

ducing T helper 1 (Th1) cells were increased in horses that survived a neurological outbreak

[18]. Recovering from natural or experimental infection is associated with a broad IgG

response dominated by IgG4/7 antibody isotypes [18, 19]. However, high antibody responses

of fast onset in combination with low and slowly increasing T-cell immunity are characteristic

for young horses overcoming EHV-1 infection and respiratory disease [8]. This supports that

protection from all clinical presentations of EHV-1 is likely complex and requires intact

humoral and cellular immunity to contain local infection, preclude viral shedding and sys-

temic cell-associated viremia, and prevent clinical disease including abortions and EHM.

Currently, several EHV vaccines are available including two single component inactivated

vaccines for prevention of abortion in pregnant mares, a modified-live vaccine (MLV) and dif-

ferent multi-component inactivated vaccines for prevention of respiratory disease [16, 18, 19,

20, 21]. These vaccines and improved biosecurity have reduced the incidence of abortion

storms, but neurologic disease outbreaks are still occurring [16, 18, 20, 21]. Two controlled

vaccination studies compared the MLV (Rhinomune, Boehringer Ingelheim) with one of the

available inactivated vaccines (Flu-vac Innovator 6 combination vaccine, Fort Dodge or Pneu-

mabort-K, Pfizer Animal Health) [16, 20]. All vaccines afforded some protection from clinical

signs, nasal shedding and viremia [16, 20]. The inactivated combination vaccine induced

stronger initial antibody responses with increased IgG3/5 antibodies, while the MLV predomi-

nately resulted in IgG4/7 production [16]. In this controlled study, horses with high IgG3/5:

IgG4/7 ratios had increased severity of neurological signs, whereas horses with high IgG4/7

antibodies and low IgG3/5:IgG4/7 ratios did not develop neurological signs or viral shedding

[16, 20, 22]. A more recent EHV vaccine study used one of the inactivated vaccines (Calvenza

EHV, Boehringer Ingelheim). A novel quantitative EHV-1 multiplex approach to determine
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anti-EHV-1 antibodies showed that the humoral response to this vaccination was dominated

by high initial IgG1 and long-lasting IgG4/7 isotypes, while only minor amounts of IgG3/5

and other isotypes were induced [21]. A similar antibody isotype pattern was identified after

experimental infection of weanlings, which resulted in mild respiratory disease [8]. In sum-

mary, the previous studies suggest that an EHV-1 specific IgG response dominated by IgG4/7

is associated with protection and effective virus neutralization [16, 18].

Although overall more protective than the inactivated vaccine, some horses vaccinated with

the MLV Rhinomune in the trial of Goodman et al. [16] still shed virus and several became

viremic when challenge infected, indicating that vaccination with available MLV is not fully

sufficient for sterile immunity [18]. In another study on correlates of immunity to EHV-1, pre-

viously infected horses that survived an outbreak and were vaccinated with MLV had higher

SN-titers and stronger cellular immunity to EHV-1 than MLV vaccinated horses that had not

been infected. This comparison suggests, that immunity induced by currently applied vaccina-

tion may be weaker than that induced by infection. It is accordingly possible that the response

pattern to available vaccines and EHV-1 infection is similar in general, but the strength and

durability may vary. Accordingly, EHV-1 infection appears the most immunogenic scenario

to date.

As protection by available vaccines seems not sufficient to prevent EHM outbreaks in the

US, several experimental MLV vaccine strains have been examined aiming to identify safe can-

didates with improved immunogenicity. The identification of immune modulatory virulence

factors of EHV-1 seems critical to achieve this. A laboratory strain of EHV-1 (KyA), contain-

ing six gene deletions, was found to be avirulent in young horses. While antibody responses to

intranasal inoculation was limited, it reduced clinical signs, nasal shedding and viremia follow-

ing challenge infection [23]. It was postulated that clinical protection in the face of a low anti-

body response was due to cellular immune responses. This led to the examination of a

modified-live virus missing only two of the six genes deleted in KyA, the gE and gI genes.

Intranasal vaccination of horses with the resulting virus provided partial protection from clini-

cal signs but failed to reduce viral shedding or viremia. This vaccine candidate also induced

only low serum neutralizing (SN) antibody responses indicating poor immunogenicity of the

gE/gI deletion mutant virus [24]. More recently, two other genes missing in the KyA strain

were examined, ORF1 and ORF2 [25]. One, of them, the ORF1 gene was explored in vitro and

shown to encode a trans membrane protein–pUL56– that is localized to the Golgi apparatus of

host cells [26]. ORF1 contributed to immune evasion in vitro by down-regulation of major

histocompatibility complex class I (MHC-I), modulation of IFN-α and IL-10 expression, and

down-regulation of chemokine expression limiting chemotaxis of monocytes and neutrophils

[26, 27]. A double deletion mutant lacking the ORF1 and ORF2 genes of the neuropathogenic

EHV-1 strain Ab4 was designed and used in an in vivo infection study in ponies. The ORF1/2

deletion reduced the initial pyrexia and resulted in shorter duration and lower viral nasal shed-

ding compared to the parent Ab4 strain. The double deletion also provoked increased IgG1

and IgG3/5 production and enhanced mRNA expression of Tbet and IL-8 in peripheral blood

mononuclear cells (PBMC). The results suggested an altered ability of the Ab4ΔORF1/2 dele-

tion mutant virus to modulate the immune response and pointed to one or both of these gene

products as contributors to immune evasion, namely as immune modulatory virulence factors

of EHV-1 [25].

The avirulent strain KyA also harbors an in frame partial gene deletion in gene 71 (ORF71),

the gene encoding glycoprotein 2 [28, 29, 30, 31, 32]. Envelope glycoproteins play vital roles in

herpesvirus infection and propagation, and are important targets of the host immune system.

EHV-1 has 13 different glycoprotein genes and 11 of these are conserved in the Alphaherpes-
virinae subfamily [33, 34]. However, homologs of EHV-1 ORF71 are only known to exist in
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EHV-4, EHV-9 and Asinine herpes virus [35, 36]. ORF71 plays a fundamental role in EHV-1

pathogenesis in a mouse model and in virus propagation as demonstrated in vitro [37, 38]. In

the absence of ORF71 EHV-1 binds to cells less effectively in vitro, is impaired in maturation

and envelopment, and egresses from the cell less efficiently [37, 39, 40]. Cell-to-cell spread of

the virus is unaffected and is the primary means of propagation in the absence of ORF71 [37,

39, 40]. The KyA ORF71 gene encodes a markedly truncated protein that is not functionally

equivalent to the full-length counterpart [31]. When the full-length ORF71 is restored in strain

KyA normal pathological responses are noted in the lower respiratory tract of mice [38].

When studied as a vaccine candidate, Ab4 with an ORF71 deletion was able to confer protec-

tion against pulmonary disease following challenge with the wild type virus in mice [41]. How-

ever, the effects of the deletion of ORF71 as a potential virulence factor during EHV-1

infection in the horse has not yet been evaluated.

Until today, none of the available vaccines induces sufficient immunity to prevent EHV-1

associated febrile disease, nasal virus shedding, and viremia completely [16, 18, 20]. An ideal

vaccine against EHV-1 should provide strong immunity against the virus that protects from

clinical signs, nasal virus shedding and viremia. Comparison of the immune response induced

by new vaccine candidates to that induced by wild-type EHV-1 infection, the strongest immu-

nogenic available to date, provides a meaningful evaluation of immunogenicity.

In this approach we have used a double gene deletion mutant of Ab4 (Ab4ΔORF1/71) miss-

ing both, ORF1 and ORF 71, for experimental infection of EHV-1 naïve horses in comparison

with the parent Ab4 strain. Based on results from previous in vitro experiments or mouse

models outlined above, both gene deletions were promising candidates for reducing virulence

of the virus, limiting immune evasion and therefore potentially increasing immunity in the

natural host, the horse. Here, we explored the effects of the ORF1/71 gene deletion from the

EHV-1 Ab4 virus in vivo by evaluating the effects of these probable virulence factors on the

induction of clinical disease, nasal shedding, viremia and humoral and cellular host immunity

in horses.

Materials and methods

EHV-1 naïve horses

Fifteen horses from the EHV-1-free herd of Icelandic horses at Cornell University were

enrolled in this study [8, 21]. All horses were offspring of the same stallion. They were born

and kept as a group in Iceland where EHV-1 has never been reported [42]. The horses were

imported to the US in April 2013 when they were 22 months of age. To maintain the EHV-1

free status of the horses, import quarantine was performed at an isolated facility at Cornell

University under USDA/APHIS supervision. All horses were kept at this facility and had no

contact to other horses in the US prior to and for the duration of this study. The facility had

restricted access for people to avoid infection with common US pathogens and to maintain the

EHV-1-free status of the Icelandic herd. Personnel caring for the herd did not have contact to

other horses or applied biosecurity precautions before entering the EHV-1-controlled facility.

After release from importation quarantine, the horses were vaccinated against rabies and teta-

nus and dewormed but were not vaccinated or treated otherwise. Before EHV-1 infection, the

horses were kept on pasture and were clinically healthy. Grass hay was fed to all horses ad libi-

tum. The experimental EHV-1 infection and all sample collections for this study were carried

out in accordance with the Guide for the Care and Use of Laboratory Animals of the National

Institute of Health as well as the Guide for Care and Use of Animals in Agricultural Research

and Teaching. The animal protocol was approved by the Institutional Animal Care and Use

Committee at Cornell University (protocol #2011–0011). All efforts were made to minimize
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suffering of the animals for example by short sedation for nervous or excited horses before

sampling. All horses survived the experimental study and were kept at the facility at Cornell

University as research horses. The isolation precautions for the EHV-1 controlled herd were

maintained in the same way as prior to the experimental infection.

Parent and deletion mutant virus used for infection

The neuropathogenic EHV-1 strain Ab4 [43] was initially isolated from a quadriplegic mare in

an outbreak in 1980 [6, 44]. Ab4 was used here as the parent virus for experimental infection.

The ORF1/71 gene deletion mutant (Ab4ΔORF1/71) was previously described in detail [26].

Both viruses were propagated in rabbit kidney cells (RK13) (ATCC, Manassas, VA, USA) in

MEM medium supplemented with 0.292 g/l L-glutamine, 1mM sodium pyruvate, 50μg/ml

gentamycin (all Thermo Fisher Scientific Waltham, MA, USA), and 10% fetal calf serum

(Atlanta biological, Flowery Branch, GA, USA).

Virus titers were determined in Ab4 and Ab4ΔORF1/71 viral stocks by virus titration

(TCID50) as previously described [16, 45]. In addition, viral plaque forming units (PFU) were

determined using a viral plaque assay as described below. After EHV-1 infection, TCID50 and

PFU were determined again in the remaining solutions from both infection stocks to confirm

the amount of virus used for infection. In addition, a PCR was performed on both infection

stocks to confirm the presence of Ab4 and Ab4ΔORF1/71 in the respective stocks. PCR prim-

ers flanking the ORF1/ORF2 gene region were used: forward primer—5'- AACAACCCT
GGCTCTTTA -3' and reverse primer—5'- GATTCGCACCTCATCTCCAC -3'. Platinum

Taq High Fidelity polymerase (Thermo Fisher Scientific, Waltham, MA, USA) was used for

PCR amplification to generate fragments of 2043 bp and 1435 bp from genomic DNA of Ab4

and Ab4ΔORF1/71 virus stocks, respectively. Finally, the PCR products were sequenced at the

Cornell Biotechnology Core Facility to confirm the integrity of the ORF1 gene in the Ab4

strain and its deletion in the Ab4ΔORF1/71. The ORF1 sequences in the virus used for experi-

mental EHV-1 infection were 100% homologous to GenBank accession # NC_001491.2. The

presence or deletion of ORF71 in Ab4 and Ab4ΔORF1/71, respectively, was confirmed by

PCR as previously described [40]. The amplified ORF71 sequence from Ab4 was 100% homol-

ogous to GenBank accession # NC_001491.2.

Experimental EHV-1 infection

EHV-1 infection was performed in November 2013 when the horses were 2.5 years of age.

Horses were randomly assigned to three groups of five horses each. One group (2 mares, 3

geldings) was not infected with EHV-1 (control). A second group (2 mares, 3 geldings) was

infected with the neuropathogenic EHV-1 strain Ab4. The third group (1 mare, 4 geldings)

was infected with Ab4ΔORF1/71.

The horses were moved into isolation barns with individual box stalls two days prior to

infection and allowed to acclimate. The stalls did not allow the horses to have direct nose-to-

nose contact. The non-infected control group was housed in a separate barn. The two infected

groups were housed in a barn with separate sections divided by a barrier where movement or

airflow between sections was not possible. Each section had a separate entry with an area for

donning and removing personal protective equipment (PPE) including disposable coveralls,

boots, caps and gloves. Control horses were always handled first and people upon entering and

exiting each of the sections changed PPE and applied hand sanitizer to prevent the spread of

virus between the three groups. Within each section, the barns had a center hallway with the

same airspace and horses were handled in each section as one group. No other specific care
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was taken to prevent spread of virus from horse-to-horse within each group by animal han-

dlers with the exception of changing gloves after taking nasal swab samples from each horse.

Baseline serum and nasal secretion samples were taken the day before EHV-1 infection (d-

1). Baseline physical examination measurements were taken on day -1 and immediately before

EHV-1 infection (d0). Viral inoculation was performed using a mucosal atomizer device

(Wolfe Tory Medical, Salt Lake City, UT). Horses in each group received one of the following

preparations coded for blinding purposes: 5 ml cell culture medium without any virus; 1 x 107

plaque-forming units (PFU) of EHV-1 strain Ab4 in 5 ml of medium; or 1 x 107 PFU of the

Ab4ΔORF1/71 virus in 5 ml of medium.

A veterinarian evaluated the general condition of the horses twice daily. The horses did not

develop severe disease and interventions were not indicated at any time throughout the study.

After sampling on day 16 post infection (d16pi), the horses were released from the isolation

barn and kept in the experimental groups on separated pastures without contact between the

different groups.

Clinical evaluation

Each day, the control group was evaluated first, followed by the two infected groups. Due to

the nature of these groupings (non-infected horses in a separate barn), the clinicians taking

samples and performing the examinations were aware of the “non-infected control group” but

were blinded as to which EHV-1 virus was administered to either infected group. Tempera-

tures were taken in the morning and evening until d7pi and then once daily before samples

were obtained in the mornings. A fever was defined as a rectal temperature of>38.5˚ C. Clini-

cal scores for nasal discharge, eye discharge, mandibular lymph node enlargement and a neu-

rologic score were given by a veterinarian and summed to determine a total clinical score for

each horse. Gait evaluation was performed while horses were led in the aisle of the isolation

barns and neurologic status was scored according to the system described by Furr and cowork-

ers [46].

Sample collection, processing and PBMC isolation

Blood samples (100 ml/horse/day) were collected by jugular venipuncture using a 20-gauge

needle with a vacutainer system into tubes with sodium heparin for PBMC isolation or without

anti-coagulant for serum collection. Blood samples were obtained on d-1, 1 to 11, 13, 16, 32,

72, 114pi. Blood in tubes without coagulant was allowed to clot at room temperature and after

centrifugation (3,000xg, room temperature, 15 min) the serum was collected and frozen in ali-

quots at -20˚C until used for quantification of EHV-1 specific antibodies and cytokines.

PBMC were isolated from heparinized blood by density gradient centrifugation (Ficoll-Paque

Plus, GE Health- care, Piscataway, NJ) within a few hours after blood collection and were

immediately processed for virus isolation, and cellular re-stimulation experiments as described

below.

Nasal swabs were obtained on the same days as the blood samples with the addition of d12

and 14pi using two sterile, polyester tipped swabs (Puritan Medical Products Company, LLC,

Guilford, ME) placed in the nostril contacting the nasal mucosa for up to 2–3 seconds. The

swabs containing nasal secretions were placed directly into polypropylene tubes containing

1 ml of PBS. The samples were maintained at 4˚C until processing within a few hours after

collection. Two nasal swab samples were taken per horse each day. One was used for virus iso-

lation the day of collection. The second samples were frozen at -80˚C and used for determina-

tion of cytokines and antibodies in the nasal secretion.
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Virus isolation in nasal secretions and PBMC

Virus isolation from nasal secretions was performed to assess viral shedding. RK13 cells were

cultured in MEM medium as described above. For all viral cultures containing nasal secretions

0.75ng/l Amphotericin B (Thermo Fisher Scientific, Logan, UT) was added to the medium.

Nasal swabs in PBS were vortexed in the collection tubes. Subsequently, serial dilutions of the

fluid were added to the RK13 cells. Plates were incubated for 2–4 hours at 37˚C in a humidified

CO2 incubator to allow the virus to attach to the cells. Afterwards, the medium was replaced

by medium containing 0.5% w/v Methylcellulose (Sigma Aldrich, St. Louis, MO) and plates

were incubated for 5 days. Then, plates were washed twice with PBS, followed by fixation and

staining with a crystal violet solution (PBS containing 0.05% w/v crystal violet, 4% v/v parafor-

maldehyde, 1% v/v methanol (all Sigma Aldrich, St. Louis, MO)) for 20 minutes at room tem-

perature. Plates were washed with tap water and allowed to dry. They were evaluated for viral

plaques by eye and by microscopy if necessary. Results were expressed as PFU per 1ml PBS

solution.

Virus isolation from PBMC was performed to determine cell-associated viremia. PBMC

were counted and a serial dilution ranging from 1x107 to 1x104 PBMC per RK13 cell well was

added to the culture medium (without Methylcellulose). Plates were incubated for 5 days,

fixed and stained as described above.

Cell-associated viremia

Real-time PCR was performed using PBMC to determine cell-associated viremia as previously

described [18]. In brief, DNA was isolated from aliquots of 5 x 106 snap frozen PBMC using

the MagMAX Total Nucleic Acid Isolation Kit (ThermoFisher). The real-time PCR reaction

was set up using DNA from an equivalent of 3.42x105 PBMC to determine relative viral

genome levels targeting the EHV-1 gB gene [47]. The efficiency of the assay was established as

92.74% (95% CI 89.14%-96.61%) using 10-fold dilutions of infected RK13 lysates (1−106

TCID50/ml). A positive cutoff was imposed at the analytic limit of detection based on 2 stan-

dard deviations above the mean Ct value for 100% of purified gB amplicon detection. Cycle

threshold (Ct) values were calculated based on the automated algorithm on the Applied Bio-

systems 7500 platform.

Quantification of EHV-1 specific antibodies in nasal secretion and serum

Antibodies specific for EHV-1 glycoproteins gB, gC and gD were measured by an EHV-1 mul-

tiplex assay as previously described [21]. A slight variation was performed during the fluores-

cent bead coupling step of the assay run here compared to the previously reported method:

instead of coupling the recombinant EHV-1 glycoproteins directly to the beads, a monoclonal

anti-equine IL-4 antibody (clone 25, [48]) was initially coupled to all three beads numbered

33, 35 and 36 (Luminex Corp.). Bead 33 was then incubated with IL-4-tagged EHV-1 gB, bead

35 with IL-4 tagged EHV-1 gC, and bead 36 with IL-4-tagged EHV-1 gD. All three IL-4-tagged

EHV-1 glycoproteins were expressed exactly as described previously [21]. After EHV-1 gB, gC

and gD incubation, the beads were washed. This step was followed by incubation of the beads

with serum or nasal secretion, respectively. Serum was run at a dilution of 1:400. Nasal secre-

tions were measured undiluted. Afterwards, detection with a polyclonal biotinylated anti-IgG

(H+L) detection antibody (Jackson Immunoresearch Laboratories, West Grove, PA) followed

by streptavidin-phycoerythrin (Invitrogen, Carlsbad, CA) was performed to analyze total

EHV-1 gB, gC or gD specific antibodies. Serum samples were also run in additional EHV-1

multiplex assays with equine isotyping reagents including antibodies against IgG1, IgG1/3,
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IgG4/7, IgG3/5, IgG6 and IgM as previously described [8, 21], and anti-equine IgA (clone

BVS2, [49]) for detection of EHV-1 specific IgA.

Cellular in vitro re-stimulation assay

EHV-1 re-stimulation of PBMC was performed as previously described in detail [8, 18, 21]. In

brief, PBMC were cultured in cell culture medium (Dulbecco’s Modified Eagle Medium

(DMEM) (Gibco, Invitrogen, Grand Island, NY) containing 10% (v/v) FCS (Thermo Scien-

tific, Logan, UT), 1% (v/v) non-essential amino acids, 2 mM l-glutamine, 50 mM 2-mercap-

toethanol, 50 mg/ml gentamicin). Cells were either kept in cell culture medium alone, were

infected with EHV-1 strain Ab4 at a multiplicity of infection (MOI) of 1, or stimulated with

phorbol 12-myristate 13-acetate (PMA; 25 ng/ml) and ionomycin (1 μM; both Sigma,

St. Louis, MO). The PMA/ionomycin stimulation was used as a positive and viability control

of the PBMC, and high cytokine values were measured after PMA/ionomycin stimulation for

all samples and cytokines described. PBMC were cultured for 48 hours in a 5% CO2 incubator

at 37˚C. For intracellular staining of cytokines and flow cytometric analysis, the secretion of

proteins from the cells was blocked by adding Brefeldin A (10 μg/ml; Sigma, St. Louis, MO) to

the plates after 24 hours of culturing. The supernatants from cultures without Brefeldin A were

collected after 48 hours for cytokine quantification.

Flow cytometric analysis of EHV-1-specific T-cells

Tri-color staining and flow cytometric evaluation of the cells was performed as previously

described [18, 50, 51]. In brief, following culture for 48 hours, re-stimulated cells were col-

lected, fixed, and permeabilized. Cells were divided in two aliquots and triple stained for either

CD4 and CD8 on the cell surface and intracellular IFN-γ production, or intracellular IL-10,

IL-4, and IL-17A production using monoclonal antibodies. The antibodies were directly

labeled and isotype-matched staining controls were used. The cells were analyzed in a FACS

Canto II flow cytometer (BD Biosciences, San Diego, CA). Evaluation of the data was per-

formed using FlowJo software version 10.2 (FlowJo LLC, Ashland, OR, USA). An analysis gate

was set on the small lymphocyte population based on cell morphology and cells in this gate

were then analyzed for cytokine production as previously described [21]. The percentages of

EHV-1-specific IFN-γ positive lymphocytes after re-stimulation were compared to medium

controls and were evaluated as previously described [8, 18, 21].

Cytokine detection by multiplex assay

Cell culture supernatants from EHV-1 re-stimulation assays of PBMC were evaluated using a

fluorescent bead-based Equine Cytokine Multiplex assay detecting IFN-α, IL-4, IL-10, IL-17

and IFN-γ as previously described [52]. The Equine Cytokine Multiplex assay is available

through the Animal Health Diagnostic Center at Cornell University. IL-4, IL-10 and IFN-α
were reported in pg/ml and IL-17 and IFN-γ were reported as U/ml.

In addition, cytokines and soluble CD14 (sCD14) in serum and nasal secretion samples

were measured using the Equine Cytokine Multiplex assay and a sCD14 assay [53]. Serum

sCD14 was reported in ng/ml.

Statistical analysis

D’Agostino & Pearson normality tests indicated that values on most days were not normally

distributed. All clinical, viral, humoral and cellular immune parameters were compared by

repeated-measures ANOVAs with Tukey’s post tests for multiple comparisons between the
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three groups. P-values of<0.05 were considered significant. The statistical analysis was per-

formed and the graphs were created using GraphPad Prism 6 for Mac OS X, version 6f.

Results

Body temperatures and clinical signs after experimental infection with the

deletion mutant Ab4ΔORF1/71 and the parent Ab4 virus

Horses infected with the Ab4 virus showed an initial high fever peak between 36 to 60 hours pi

(d1.5, d2, and 2.5pi) with significantly higher body temperatures than non-infected controls

(all p<0.0001). Horses infected with Ab4ΔORF1/71 did not show this initial fever characteris-

tic for EHV-1 infection and had lower body temperatures than the Ab4 group with p<0.05,

0.0001, and 0.05, on days 1.5, 2 and 2.5 pi, respectively (Fig 1A). In fact, horses in the

Ab4ΔORF1/71 group did not show a fever until day 2.5 pi. Body temperatures between the

Ab4ΔORF1/71 and control groups were not different until d3pi. After d3pi, horses in the Ab4

and Ab4ΔORF1/71 groups showed a low-grade fever in the evenings of d3.5–6.5pi. Compared

to the control group, the body temperature of the Ab4 group was increased on d4.5

(p<0.0001) and d5.5 (p<0.01), while the Ab4ΔORF1/71 groups had elevated temperatures on

d3.5 and d5.5 (both p<0.05).

Infected horses showed clinical signs of mild respiratory disease. None of the horses devel-

oped neurological signs. The total clinical score, which evaluated nasal discharge, ocular dis-

charge, lymph node enlargement, and neurological signs, was similar between the Ab4 and

Ab4ΔORF1/71 groups at most time points during the study (Fig 1B). Higher clinical scores

than in non-infected controls were only observed on d3pi in the Ab4 group (p<0.01) and on

d4 and 11pi the Ab4ΔORF1/71 group (p<0.01 and p<0.05, respectively).

Viral shedding and viremia

EHV-1 was not isolated from nasal secretions of horses in the non-infected group. In the Ab4

group, EHV-1 was isolated from nasal secretions of all horses on d1pi, of three horses each on

d2 and d3pi, and of one horse on d4pi (S1 Table). Only 1 out of 5 horses infected with the

Ab4ΔORF1/71 deletion mutant virus had virus present in nasal secretions on d1-2pi. Overall,

nasal shedding in Ab4 infected horses was significantly increased compared to the other two

groups (both p<0.05) on d1pi (Fig 1C). Virus isolation was performed daily until d9, and also

on d11 and d13pi with no virus isolated beyond d4pi.

EHV-1 viremia was evaluated in PBMC by virus isolation (Fig 1D) and also by PCR (Fig

1E). EHV-1 was not isolated from or detected in PBMC of the control horses. All horses in

both infected groups developed viremia. Virus isolation identified infectious virus in PBMC

from horses infected with Ab4 or Ab4ΔORF1/71 between d4-8pi with peak amounts of infec-

tious virus on d6pi. Viral DNA was detected by PCR in PBMC of Ab4 infected horses and was

increased compared to the control group on d4-6pi (all p<0.0001) and d7pi (p<0.05).

Ab4ΔORF1/71 infected horses had viral DNA in their PBMC from d4-9pi (Fig 1E) which was

significantly higher than in control horses. On d7 and 8pi, Ab4ΔORF1/71 infected horses had

increased viral DNA copies in their PBMC compared to the Ab4 group (both p<0.05).

Intranasal immune response after EHV-1 infection

Infection with EHV-1 Ab4 induced an intranasal cytokine response characterized by a sharp

increase in IFN-α on d2pi (p<0.0001) and elevated IL-10 staring on d2pi (p<0.01) on d2pi

compared to the Ab4ΔORF1/71 infected and non-infected control groups (Fig 2A and 2B). In

addition, sCD14 was significantly increased in Ab4 infected horses compared to horses in the
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Ab4ΔORF1/71 group on d3pi (p<0.01) and compared to non-infected controls on d3pi

(P<0.0001) and d4pi (p<0.001) (Fig 2C). The increase in IFN-α, IL-10 and sCD14 in the Ab4

group occurred simultaneously with the initial fever peak and nasal viral shedding in this

group (Fig 1A and 1C). Intranasal IFN-α, IL-10 and sCD14 did not differ between the

Ab4ΔORF1/71 infected and uninfected control groups. Intranasal IFN-γ, IL4, or IL-17 levels

were overall low and did not differ between all three groups before or after infection (data not

shown).

Intranasal anti-EHV-1 gC antibodies were significantly increased in the Ab4 group com-

pared to non-infected controls between d9-16pi (Fig 2D) and peaked on d10pi. Intranasal anti-

bodies developed more gradually after Ab4ΔORF1/71 infection than after Ab4 infection, were

higher than in non-infected controls between d13-16pi (Fig 2D), and peaked on d16pi. Intra-

nasal anti-gC antibodies were higher in Ab4 than in Ab4ΔORF1/71 infected horses on d10

Fig 1. Body temperatures, clinical scores, nasal viral shedding and viremia after experimental EHV-1 infection of

naïve horses. The horses were infected with EHV-1 strain Ab4 (n = 5) or deletion mutant strain Ab4ΔORF1/71

(n = 5). The arrow points to the time of infection (d0). A non-infected control group (n = 5) was included. (A) Body

temperatures. The dotted line shows the cut-off value for fever of 38.5˚C; (B) total clinical score determined by the

summation of several clinical variables evaluated on a numerical scale; (C) EHV-1 in nasal secretions measured by

virus isolation; (D) viremia measured by virus isolation from PBMC; (E) viremia determined by real-time PCR. The

dotted horizontal line shows the positive PCR Ct-value cut-off value. All graphs show means and standard errors by

group. Significant differences between groups are marked: a = Ab4 vs. controls, b = Ab4ΔORF1/71 vs. controls, and

c = Ab4 vs. Ab4ΔORF1/71.

https://doi.org/10.1371/journal.pone.0206679.g001
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(p<0.0001) and d12pi (p<0.05). However, between d14-16pi the Ab4ΔORF1/71 group dem-

onstrated a higher antibody response then the Ab4 group (p<0.05). By d32pi the intranasal

anti-gC antibody response had returned to baseline in both infected groups. Intranasal anti-gB

and anti-gD antibodies were similar to the antibody response against EHV-1 gC in onset and

magnitude (S1 Fig).

EHV-1 specific antibody response in serum

The serum antibody responses against EHV-1 gB, gC, and gD were similar for both total anti-

body and isotypes measurements. Representative results for antibodies against EHV-1 gC are

presented here (Fig 3).

Before infection (d-1), anti-gC EHV-1 antibodies in serum of all groups were below the

positive cut-off range of the assay. In both infected groups, Ab4 and Ab4ΔORF1/71, anti-gC

antibodies were induced. In these groups, antibodies were first detectable on d6pi (Ab4) or

d8pi (Ab4ORF1/71) and started to plateau after d13pi (Ab4) or d16pi (Ab4ΔORF1/71) (Fig

3A). Anti-gC antibody values in both infected groups remained increased through the end of

study period on d114pi. None of the control horses displayed a serological response against

EHV-1 during this time. The initial increase of anti-gC antibodies was more rapid in the Ab4

infected horses than in Ab4ΔORF1/71 infected horses. Compared to the control group, the

Ab4 group anti-gC antibodies increased on d8pi (p<0.01) and stayed high afterwards

Fig 2. Cytokines and total anti-EHV-1 gC antibodies in nasal secretions of naïve horses (n = 5 per group) after

infection with EHV-1 strain Ab4 or its deletion mutant Ab4ΔORF1/71. Non-infected horses were kept as controls.

The arrow marks the time of infection. Nasal secretion samples were collected before and at various times after

infection. Cytokine concentrations were analyzed by a bead-based Cytokine Multiplex assay and antibodies were

evaluated by EHV-1 multiplex assay: (A) IFN-α (B) sCD14, (C) IL-10, and (D) total anti-gC antibodies expressed as

median fluorescence intensities (MFI). Mean and standard errors are displayed. Significant differences between

groups: a = Ab4 vs. controls, b = Ab4ΔORF1/71 vs. controls, and c = Ab4 vs. Ab4ΔORF1/71.

https://doi.org/10.1371/journal.pone.0206679.g002
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(d9-d114pi: all p<0.0001). In the Ab4ΔORF1/71 group, serum anti-gC antibodies were first

higher than in control horses on d12pi (p<0.05) and from then on (d14pi: p<0.001; d16-d114

pi: all p<0.0001). The slower onset of serum antibody development in the Ab4ΔORF1/71

group compared to the parent Ab4 virus infected group was also reflected in significantly dif-

ferent antibody values between these two groups on d9pi (p<0.01).

EHV-1 gC-specific IgG1 and IgG4/7 isotypes dominated the gC-specific antibody response

in serum (Fig 3B and 3D). IgG4/7 antibodies overall resembled the total antibody response

with a more rapid onset of anti-gC IgG4/7 in the Ab4 (d8pi) than in the Ab4ΔORF1/71 group

(d11pi) and long-lasting antibodies until the end of the study (d114pi) in both infected groups

(Fig 3D). In contrast, anti-gC IgG1 started to increase slightly after IgG4/7 antibodies in the

Ab4 group (d10pi) and simultaneously with IgG4/7 in the Ab4ΔORF1/71 group (d11pi). After

d16pi, IgG1 antibodies declined rapidly in both infected groups and were similar to the control

group from d32pi (Ab4) on. Horses infected with the Ab4ΔORF1/71 deletion mutant devel-

oped higher anti-gC IgG1 responses until d32pi (Fig 3B). IgG1/3 antibody responses resem-

bled IgG1 antibodies and were therefore considered to be composed almost exclusively of

IgG1 (Fig 3C). In both infected groups, gC specific IgG3/5 was induced at low levels and was

not increased compared to the control group at any time (S2B Fig). In addition, anti-gC IgG6

antibodies were induced at very low values after infection. The IgG6 values increased on d13

Fig 3. Total anti-EHV-1 gC and IgG isotype responses in serum from horses after infection with the EHV-1 strain

Ab4 or its deletion mutant Ab4ΔORF1/71. EHV-1 naïve horses (n = 5 per group) were infected with the EHV-1

strain Ab4 or Ab4ΔORF1/71. Non-infected horses were kept as controls. The arrow marks the time of infection on d0.

Serum antibodies were measured by an EHV-1 Multiplex assay. Antibody values are expressed as median fluorescence

intensities (MFI) for (A) total Ig, (B) IgG1, (C) IgG1/3, and (D) IgG4/7. All graphs show means and standard errors by

group over time. The dotted vertical lines mark d8 and d12pi to illustrate the time of the onset of the response for total

Ig and the different IgG isotypes. Significant differences between the groups are shown: a = Ab4 vs. controls,

b = Ab4ΔORF1/71 vs. controls, and c = Ab4 vs. Ab4ΔORF1/71.

https://doi.org/10.1371/journal.pone.0206679.g003
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to 32pi (Ab4ΔORF1/71) or d16pi (Ab4) compared to the controls, and declined after d16pi in

both infected groups (S2C Fig).

EHV-1 infection did not induce a major serum gC-specific IgM response during the acute

phase of the infection and IgM antibodies remained low in all groups throughout the study

period (S2A Fig). However, serum IgM values in the control group were elevated on d72 (p<

0.01) and d114pi (p<0.001) compared to the Ab4ΔORF1/71 infected group This is likely an

artificial difference resulting from higher levels of anti-gC IgG in the sera of the infected

groups combined with some minor non-specific IgM reactivity in the control group samples.

Anti-gC IgA was not detected in serum at any time (data not shown).

Characterization of cellular immune responses

Cellular immune responses following infection were compared between the three groups after

re-stimulation of PBMC with EHV-1 Ab4 ex vivo. Secreted cytokines were measured in the

supernatants. Overall, IFN-γ and IL-10 secretion from EHV-1 re-stimulated PBMC was

detectable in the infected groups within two weeks pi while PBMC from non-infected horses

did not secrete these two cytokines (Fig 4A and 4B). Specifically, IFN-γ secretion started to rise

in the Ab4 group by d4pi and was increased on d5 (p<0.01), d8 (p<0.0001) and d9pi (p<0.01)

compared to the control group. In the Ab4ΔORF1/71 group, IFN-γ production became detect-

able on d5pi and was increased compared to non-infected controls on d8pi (p<0.01). PBMC

from horses infected with Ab4 had higher IFN-γ production compared to those infected with

Ab4ΔORF1/71 on d5 (p<0.05) (Fig 4A). IL-10 secretion from PBMC of horses infected with Ab4

was increased on d5 (p<0.0001) and d8pi (p<0.001) compared to non-infected controls. On

d5pi, the IL-10 concentration in the Ab4 group was also higher than in the Ab4ΔORF1/71 group

(p<0.0001). Between d6-9pi, mean IL-10 concentrations were similar between the two infected

groups, even if the Ab4ΔORF1/71 group IL-10 concentrations did not reach significance com-

pared to the non-infected group (Fig 4B). Beyond d16 pi, IFN-γ and IL-10 secretion from EHV-1

re-stimulated PBMC was no longer detectable or only detectable for single horses at low values on

d72 pi (data not shown). IL-4 was induced at low concentrations in cells from infected horses and

mostly in the second week pi (Fig 4C). In comparison to the non-infected control group, IL-4

secretion was elevated in the Ab4 group on d8 (both p<0.05), and d11pi (p<0.01), while IL-4

secretion in the Ab4ΔORF1/71 horses was increased on d10pi (p<0.05). On d11pi, IL-4 secretion

was also higher in the Ab4 group than in the Ab4ΔORF1/71 group (Fig 4C). IL-17 was not

detected and IFN-α was continuously secreted pre- and post-infection (d-1 to d16pi) by EHV-1

re-stimulated PBMC at high concentrations but without differences between all three groups.

The cellular sources of IFN-γ, IL-10 and IL-4 were analyzed by flow cytometric analysis of

EHV-1 re-stimulated PBMC. EHV-1 specific T-cells were identified by triple staining with the

cell surface markers CD4 and CD8 and intracellular staining with anti-IFN-γ. IFN-γ produc-

ing lymphocytes were not detectable for all three groups pre-infection and until d16pi. Starting

on d32pi, EHV-1-specific IFN-γ producing lymphocytes were increased in PBMC from both

infected groups (p<0.05) compared to non-infected controls and this continued until d114pi

(p<0.01) (Fig 5A). However, the percentages of EHV-1-specific IFN-γ+ lymphocytes were

overall low with maximal percentages of around 0.1% IFN-γ+ cells in the Ab4 and Ab4ΔORF1/

71 groups. Within these, CD8+/IFN-γ+ cells dominated the EHV-1 specific T-cell response

from d32pi on (Fig 5B), while CD4+/IFN-γ+ cells remained at very low percentages throughout

the study (Fig 5C). The only exception was a moderate one-time increase of CD4+/IFN-γ+ on

d32pi in horses infected with Ab4. By d72pi, the CD8+/IFN-γ+ phenotype represented the

majority of the IFN-γ producing lymphocytes until d114pi (Fig 5B and 5C). PBMC were also

stained for IL-4, IL-10 or IL-17 which were not detected in EHV-1 re-stimulated PBMC.
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Fig 4. Cytokine secretion from PBMC of EHV-1 infected horses after re-stimulation ex vivo. EHV-1 naïve horses

were infected with one of two EHV-1 strains (Ab4 or Ab4ΔORF1/71). A group of non-infected control horses was

included (n = 5 per group). The arrow points to the time of infection. PBMC were harvested before and at several time

points after infection and were re-stimulated with the EHV-1 strain Ab4 or were kept in cell culture medium. After 48

hours of incubation cell culture supernatants were harvested and cytokine production was analyzed by a bead-based

Cytokine Multiplex assay. All EHV-1 re-stimulation values shown in the figures are corrected by the value of the

respective medium control. Mean and standard errors for (A) IFN-γ, (B) IL-10, and (C) IL-4 in the cell culture

supernatants are displayed. Significant differences between groups: a = Ab4 vs. controls, b = Ab4ΔORF1/71 vs.

controls, and c = Ab4 vs. Ab4ΔORF1/71.

https://doi.org/10.1371/journal.pone.0206679.g004
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Cytokine response in serum

Before and following experimental infection different serum cytokines and sCD14 were quan-

tified in fluorescent bead-based assays (S3 Fig). Serum sCD14 increased in the serum of both

Fig 5. EHV-1 specific IFN-γ producing lymphocytes in PBMC. EHV-1 naïve horses (n = 5 per group) were infected

with the EHV-1 strain Ab4 or the deletion mutant virus Ab4ΔORF1/71. Non-infected horses were kept as controls.

The arrow marks the time of infection. PBMC were isolated at different times post infection and re-stimulated with

EHV-1 strain Ab4 ex vivo or were kept in cell culture medium for control. The secretion inhibitor Brefeldin A was

added to the cultures for the last 24 hours. Cells were harvested at 48 hours, fixed, stained for intracellular IFN-γ
production and cell surface CD4 and CD8, and measured by flow cytometry. The analyzing gate was set on small

lymphocytes. Mean and standard errors for the percentages of (A) total IFN-γ+ lymphocytes, (B) CD8+/IFN-γ+

lymphocytes, and (C) CD4+/IFN-γ+ lymphocytes are displayed over time. All percentages for IFN-γ+ cells were

corrected by the respective medium control values. The dotted horizontal line represents a suggested cutoff of 0.05%

IFN-γ+ lymphocytes. Values below this cutoff were typically reached for IFN-γ+ cells in the non-infected control group

prior to correction by medium control values. Significant differences between groups are marked: a = Ab4 vs. controls,

b = Ab4ΔORF1/71 vs. controls, and c = Ab4 vs. Ab4ΔORF1/71.

https://doi.org/10.1371/journal.pone.0206679.g005
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infected groups when compared to non-infected controls starting on d4pi and continuing

until d6pi (Ab4) or d7pi (Ab4ΔORF1/71). Serum sCD14 was also higher in the Ab4ΔORF1/71

infected group compared to the Ab4 infected group at d16pi (S3A Fig). Serum IFN-γ was not

different between groups at any point during the study. However, there was a notable increase

in serum IFN-γ values compared to the pre-infection values after the first week of stabling in

all groups including the non-infected controls (S3B Fig). IFN-α, IL-4, IL-10, and IL-17 were

inconsistently detectable in sample from individual horses and values were overall low and

without any differences between groups.

Discussion

Previously, ORF1 was evaluated after infecting cells with Ab4ΔORF1 deletion mutants in vitro.

In comparison with its parent Ab4 strain, it was identified that the ORF1 gene contributed to

down-regulation of MHC-I, modulation of IFN-α and IL-10 expression, and down-regulation

of chemokine expression limiting chemotaxis of monocytes and neutrophils, thereby aiding in

immune evasion [26, 27]. ORF71 was found to play a role in immune modulation and respira-

tory pathology of EHV-1 in mice [54]. The ORF1/71 gene deletion [26] was developed with

the expectation of limiting immune evasion and virulence with the resulting strain combined

with more effective immunity and longer lasting memory to protect against the severe clinical

manifestations of EHV-1 infection.

In this study, we have explored the influence of the ORF1 and ORF71 genes of EHV-1 on

clinical disease, nasal shedding, viremia and immune induction. The gene deletion mutant

virus, Ab4ΔORF1/71, appeared to be a valid vaccine candidate based on its ability to induce

antibody responses and cellular immunity similar to the parent neuropathogenic Ab4 strain

while being less virulent as it induced less fever and reduced nasal viral shedding.

Biphasic pyrexia has been observed during wild type EHV-1 infection [55] and was also

seen here in the Ab4 group. The absence of the initial fever spike in the Ab4ΔORF1/71

infected group demonstrates the lower virulence of this virus. Overall, mild respiratory

signs were observed in both infected groups, while neurological signs were not induced.

The absence of neurologic signs is not entirely unexpected as other experimental EHV-1

infection studies using neuropathogenic strains such as Ab4 resulted in 0–35% of horses

demonstrating neurologic signs [16, 25]. Similarly, 3–45% of horses have been reported to

be affected by neurologic signs in natural outbreaks in the US and Europe [10, 56, 57, 58].

Young mature horses were used in this study. In one previous study, a positive correlation

was observed between aged mares (> 20 years) and development of neurologic signs with

67% developing neurologic signs following experimental infection [17]. Although

increased age might be a risk factor for EHM, neurological outbreaks occur in horses of

all ages [1, 16].

Although the virulence of Ab4ΔORF1/71 was reduced, the mutant virus induced viremia

after infection similar to that observed for the Ab4 strain. Cell-associated viremia is considered

a main contributor to the spread of EHV-1 to endothelial cells and is thereby a pre-requisite

for the development of EHM and abortion [16, 59, 60]. It is thus possible that the Ab4ΔORF1/

71 virus will still be able to induce neurologic disease. It is still unknown how viremia will be

affected in Ab4ΔORF1/71 infected horses upon EHV1 challenge infection. This needs to be

determined before further evaluating Ab4ΔORF1/71 as a vaccine candidate. It will likely be

necessary to further attenuate the Ab4ΔORF1/71 strain to limit viremia after initial infection.

Our finding that ORF1/71 deletion did not influence viremia was consistent with a previous

experimental infection study using a double ORF1/ORF2 deletion mutant of Ab4 [25].

Together, these observations suggest that the ORF1 gene is not or only randomly responsible
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for the absence of viremia observed after infection with the 6-gene deletion mutant KyA, one

of which is ORF1 [23].

Nose-to-nose transmission or transmission via infected fomites are the most common

routes of infection for EHV-1 [1]. Here, viral shedding was clearly reduced by both duration

and magnitude in the Ab4ΔORF1/71 infected group compared to Ab4. Importantly, after

Ab4ΔORF1/71 infection most (4/5) horses did not shed detectable amounts of virus and the

fifth horse shed virus at a low titer on only one day pi. In contrast, nasal shedding was detected

in all five horses in the Ab4 infected group. These findings are consistent with studies of other

EHV-1 mutants also missing the ORF1 gene [23, 25]. This suggests that the ORF1 gene of

EHV-1 is involved in viral replication in the equine nasal epithelium.

In agreement with the almost absent nasal shedding, horses infected with Ab4ΔORF1/71

did not develop intranasal IFN-α, IL-10 or sCD14 responses, while Ab4 infected horses

secreted IFN-α and IL-10 at the local infection site starting on d2pi and sCD14 on d3pi. Intra-

nasal secretion of these three markers occurred simultaneously with the initial fever spike and

viral shedding. IFN-α is known for its anti-viral activity in vitro alarming neighboring cells

and the immune system about the invader [61, 62, 63]. However, during in vivo infection with

EHV-1 IFN-α rather represents a ‘danger signal’ that seems to be linked to the amount of virus

in the nasal secretion. The absence of detectable intranasal IFN-α together with reduced anti-

inflammatory IL-10 and inflammatory sCD14 production compared to the parent Ab4 strain

points to an overall decreased mucosal innate immune response as a consequence of the

ORF1/71 gene deletions from Ab4. This further supports the reduced virulence of the

Ab4ΔORF1/71 virus. Despite the reduced innate immune induction at the site of infection, the

intranasal antibody response was not compromised by the ORF1/71 deletion. Although the

intranasal anti-gC response started slower after Ab4ΔORF1/71 infection, it was compensated

by a higher magnitude than the anti-gC response induced by Ab4 on days 14 and 16pi. The

slower onset of the intranasal antibody response against Ab4ΔORF1/71 is likely also a result of

the lower amount of virus at the local infection site.

Homologs of ORF1, genes of the UL56 family, in other alphaherpesviruses encode proteins

similar to that in EHV-1 [64]. The homologous proteins of herpes simplex virus (HSV-)1 and

HSV-2 are dispensable for virus growth in vitro but contribute to pathogenicity in mice [65,

66]. Similarly, we observed reduced virulence after infecting horses with Ab4ΔORF1/71 com-

pared to Ab4. This, together with the evidence from HSV models, indicates that ORF1 is a vir-

ulence factor of alphaherpesviruses and its deletion is likely beneficial for attenuation during

vaccine development.

The induction of serum antibodies against both viruses, Ab4 and Ab4ΔORF1/71 was simi-

lar, again with the exception of the slightly slower onset of the systemic antibody response after

Ab4ΔORF1/71 infection. It can be concluded that the deletion of the ORF1 and ORF71 genes

from the Ab4 virus did not influence the magnitude or duration of the antibody response after

infection. The slightly delayed onset of the serum antibody response in horses infected with

Ab4ΔORF1/71 may again be a consequence of the lower intranasal virus load as a result of

reduced replication at the infection site, similar to local antibodies at the nasal mucosa dis-

cussed above. Serum antibody responses to both viruses were dominated by IgG1 and IgG4/7.

IgG4/7 closely mimicked total anti-gC antibodies over the whole period of observation. IgG1

antibodies were induced in a short-term response declining after 2 months, while IgG4/7 anti-

bodies sustained for at least 4 months pi. An IgG response dominated by IgG1 and IgG4/7 iso-

types is characteristic for EHV-1 infection and has been observed for various EHV-1 strains

[8, 18, 25]. The overall isotype pattern of the antibody response seen here for both viruses was

also similar to that seen following vaccination with an inactivated vaccine in EHV-1 naïve

pregnant mares using a similar antibody assay for the measurement as used here [21].
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However, some EHV vaccines induce a mixed or IgG3/5 dominated response when isotype

responses were evaluated by ELISA [16, 20]. A broad IgG response dominated by IgG4/7 is

believed to be protective [16, 18]. IgG1, IgG4, and IgG7 isotypes of the horse have been linked

to Th1 responses, and therefore, the isotype pattern seen here indicates a Th1/IFN-γ driven B-

cell response [21, 67, 68, 69].

It is notable that these EHV-1 naïve horses did not mount an obvious IgM response but

instead rapidly increased IgG antibodies starting at d8pi. This suggests an initial IgG B-cell

response in these EHV-1 naïve horses consisted mainly of IgG1 and IgG4/7. A similar initial

IgG1 response, subsequently followed by IgG4/7, was also seen following each vaccination in a

multiple vaccination study of EHV-1 naïve mares [21] and after experimental infection of

EHV-1 naïve weanlings who only mounted a weak and flat IgM response similar to the IgM

antibodies observed in this current study [8]. These findings suggest that anti-EHV-1 B-cell

responses, even in horses that have not been exposed to EHV-1 previously, are rarely

completely undetectable. One possible reason for the missing anti-EHV-1 IgM response in

EHV-1 naïve horses could be that EHV-4 is endemic in Iceland and consequently the horses

used in these studies have likely been exposed to EHV-4 during their lifetime. We have

observed that pre-existing EHV-4 antibodies against the gC and gD antigens, which are highly

homologous between EHV-1 and EHV-4, partially cross-react in the EHV-1 multiplex assay

used here (data not shown). Thus, the low pre-infection EHV-1 gC and gD antibody values

concurrently indicate that EHV-4 antibodies were also very low in these horses immediately

prior to infection. Nevertheless, an existing memory B-cell response against EHV-4 from an

exposure to EHV-4 earlier in life could have inhibited the classical onset of an initial IgM

response after the experimental EHV-1 infection performed here. An alternative hypothesis

for the weak IgM isotype induction observed here is that IgG, and in particular IgG1, can be

induced early following EHV-1 infection in horses without a preceding high magnitude IgM

response [21, 69]. The latter hypothesis is supported by the early onset and short-term longev-

ity of IgG1 antibodies observed in this and previous experimental EHV-1 infection and vacci-

nation studies [8, 21] and by the functional similarity between equine IgM and IgG1 which

can both effectively activate complement and bin to Fc-receptors [67, 69].

Notably, the robust systemic antibody response developed quickly after infection and in the

absence of a detectable systemic EHV-1 specific Th cell response, as evidenced by the lack of

EHV-1-specific CD4+ cells in re-stimulated PBMC during the first 2–3 weeks pi. T-cell

responses were first detectable one month pi, were dominated by CD8+ cells, and stayed at low

frequencies until three months pi. The same discrepancy between detectable antibody and T-

cell responses has previously been observed after infection of weanlings with the EHV-1 strain

NY03 [8]. While the low EHV-1 specific T-cell response in the seven months old weanlings [8]

could possibly be explained by a partially immature immune system, the T-cell responses after

Ab4 infection of the 2.5 years old, fully immunologically mature horses used here was almost

identical. This makes the influence of horse age or viral strain on the weak T-cell response

rather unlikely. With respect to the robust antibody response, the location and mechanism of

B-cell induction after EHV-1 infection is yet to be fully unraveled. Likely B-cell induction and

early EHV-1-specific antibody development happens in the regional lymph nodes and lym-

phatic tissues of the upper respiratory tract, as mandibular lymph node swelling was noted

around the time when antibodies started to appear in nasal secretion and serum. One likely

possibility is that a mild, localized Th1-cell response is sufficient to induce EHV-1 specific B-

cell immunity, and this response is not detectable in the peripheral blood by the assays used

here. A second reason for the low EHV-1 specific T-cell response could be that EHV-1 actively

down-regulates T-cell induction, leading to the delayed and weak T-cell responses in PBMC

observed here and previously [8]. In vitro, the deletion of ORF1 improves MHC-I and cytokine

Deletion of ORF1 and ORF71 genes of EHV-1 reduces virulence

PLOS ONE | https://doi.org/10.1371/journal.pone.0206679 November 15, 2018 18 / 25

https://doi.org/10.1371/journal.pone.0206679


expression after EHV-1 infection [26]. Although the ORF1 deletion could potentially lead to

improved antigen presentation and T-cell stimulation in vivo, our current results showed no

effect of the ORF1 deletion on circulating EHV-1 specific T-cell numbers and do thus not sup-

port the hypothesis that the ORF1 gene product inhibits T-cell immunity.

This study also clearly showed that serum cytokines are not indicative of the horse’s cellular

immune response to EHV-1. Overall and in contrast to intranasal cytokine responses dis-

cussed above, serum cytokines appear to be of low diagnostic value. However, the profiles of

secreted cytokines induced from PBMC after re-stimulation with EHV-1 provide some evi-

dence for the potential of EHV-1 to interfere with T-cell induction. Secreted IFN-γ and IL-10

production from PBMC started on day 4-5pi in the absence of a detectable T-cell response in

the same PBMC samples. Thus, these cytokines are likely produced by innate immune cells,

such as natural killer cells or γ /@ T-cells for IFN-γ [70, 71, 72, 73] and monocytes or plasmacy-

toid dendritic cells may produce IL-10 [74, 75]. IFN-γ is a potent positive driver of cellular

immune responses and plays an important role in adaptive immune induction, while IL-10 is

important immune regulator with anti-inflammatory potential, that may modulate the T-cell

response [75, 76, 77]. After EHV-1 infection with Ab4 or Ab4ΔORF1/71, induction of IFN-γ
and IL-10 secretion from PBMC was maintained during the first 11-14dpi. Afterwards, IFN-γ
and IL-10 secretion from PBMC was no longer detectable or only detectable for single horses

at low values until the end of the study period. This was an unexpected finding. It was expected

that at least the IFN-γ values would increase and be maintained with EHV-1 specific T-cells

developing. Instead, the IFN-γ secretion decreased again in PBMC isolated from horses

infected two weeks pi. However, this observation was similar to results seen in the weanlings

discussed above following experimental EHV-1 infection. More dramatically, in weanlings

IFN-γ and IL-10 secretion from EHV-1 re-stimulated PBMC sharply increased at the end of

the first week pi and then declined rapidly to undetectable values after 2 (IFN-γ) to 4 days (IL-

10) [8]. Overall, these observations suggest that EHV-1 interferes with the innate immune sys-

tem’s ability to produce IFN-γ, possibly by induction of regulatory IL-10 and other anti-

inflammatory or regulatory cytokines. The EHV-1 interference likely resulted in the observed

shut-down of IFN-γ production by PBMC which became unresponsive to re-stimulation with

EHV-1. It can be hypothesized that the interference of EHV-1 with innate IFN-γ production is

partially responsible for the delayed and weak EHV-1-specific T-cell induction and memory

response observed after experimental infection. This hypothesis requires additional future

experimental proof.

As mentioned above, adaptive T-cell immunity, measured as IFN-γ production by T-cells,

was low overall and of slow onset, undetected until one-month pi. The main source of the

IFN-γ from T-cells was from the CD8+ T-cells and was similar in both infected groups. EHV-1

stimulated IFN-γ production by T lymphocytes was previously described to be dominated by

CD8+ cells for several months following infection [74, 75, 18], but changes over time to a dom-

inant CD4+/IFN-γ+ response in survivors of experimental and natural infections [18, 78, 79].

The overall low T-cell induction seen here supports the above hypothesis of EHV-1 interfering

with T-cell induction by down-regulating innate and adaptive cellular immune responses, sup-

pressing cytokine production, and modulating the T-cell response. Cytotoxic T lymphocytes

(CTL) are currently considered protective against EHM [2, 12, 15, 17, 59, 60, 79, 80]. This is

based on the hypothesis that the development of EHM and abortion rely on viremia using the

infected peripheral blood cell as a vehicle to transport EHV-1 to the endothelial cells in the

CNS or uterus [2, 6, 14, 15, 16, 59, 60]. It has also been concluded that cell-associated viremia

cannot be cleared by serum antibodies. Thus cell-mediated immunity in the form of EHV-

1-specific CD8+ CTL is believed to be necessary to remove infected cells from the circulation,

thereby limiting viremia and the possibility of spreading EHV-1 to endothelial cells. It has
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been shown experimentally that EHV-1-specific CTL protect against EHV-1 induced abortion

[60], and that high amounts of EHV-1-specific CTL precursors correlated with protection

against EHM in aged mares [17]. Despite all these advances in understanding host immunity

against EHV-1, it continues to be important to further define responses that represent protec-

tion from EHV-1 and its more severe clinical manifestations.

Conclusion

The results demonstrate that Ab4ΔORF1/71 is an interesting vaccine candidate because of its

ability to induce antibody responses and cellular immunity similar to the parent Ab4 strain

while being less virulent. Notably, Ab4ΔORF1/71 produces only a mild fever and significantly

less viral shedding (80% fewer horses). Accordingly, ORF1/71 deletion reduces virulence. Vire-

mia is not influenced by the ORF1/71 gene deletions. Further evaluation of Ab4ΔORF1/71 in a

challenge and protection study is needed to determine its full potential as a vaccine candidate,

especially in respect to preventing cell-associated viremia after EHV-1 challenge. Currently it

is believed that a combination of humoral and cell-mediated immunity is necessary to protect

from these severe clinical signs and reduced viral shedding [12, 13]. Decreasing nasal shedding

prevents the spread of the virus and disease between individual horses. Reducing viremia is

believed to be mechanistically required for preventing the more severe clinical manifestations

of EHM and abortion [2, 6, 14, 15, 16]. We have shown here and previously [8] that the induc-

tion of cellular immunity against EHV-1 is slow and EHV-1 specific T-cell memory is weak

after experimental infection. Simultaneously, strong antibody responses against EHV-1

develop rapidly. The interference of EHV-1 with innate and adaptive cellular immune

responses of the host, and in particular the down-regulation of innate IFN-γ production, takes

most likely an active part in decreasing the EHV-1 specific T-cell immunity. An improved def-

inition of protective immunity against EHV-1 paired with advanced, quantitative detection

methods for host immune parameter detection seems essential to further mechanistically

unravel protection from EHV-1 infection, nasal shedding, as well as viremia. Understanding

the interaction of EHV-1 with the host immune system during its various disease outcomes

will support the development of effective EHV-1 vaccines and enhance protection from severe

EHV-1 outbreaks.

Supporting information

S1 Table. Virus isolation from nasal secretions (PFU/ml) of naïve horses after experimen-

tal EHV-1 infection with the EHV-1 strain Ab4 or deletion mutant strain Ab4ΔORF1/71

(n = 5 per group).

(DOCX)

S1 Fig. Total anti-EHV-1 gB and gD antibodies in nasal secretions of naïve horses (n = 5

per group) after infection with EHV-1 strain Ab4 or its deletion mutant Ab4ΔORF1/71.

Non-infected horses were kept as controls. The arrow marks the time of infection. Nasal secre-

tion samples were collected before and at various times after infection. Antibodies were evalu-

ated using an EHV-1 multiplex assay: (A) total anti-gB and (B) total anti-gD antibodies are

expressed as median fluorescence intensities (MFI). Mean and standard errors are displayed.

Significant differences between groups: a = Ab4 vs. controls, b = Ab4ΔORF1/71 vs. controls,

and c = Ab4 vs. Ab4ΔORF1/71.

(TIF)

S2 Fig. Anti-EHV-1 gC IgM, IgG3/5 and IgG6 responses in serum from horses (n = 5 per

group) after EHV-1 infection with Ab4 or its deletion mutant Ab4ΔORF1/71. Serum
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antibodies were measured by an EHV-1 multiplex assay and results are expressed as median

fluorescence intensities (MFI) for (A) IgM, (B) IgG3/5 and (C) IgG6. The arrow point to the

day of infection. Graphs show means and standard errors by group over time. Significant dif-

ferences between groups are marked: a = Ab4 vs. controls, b = Ab4ΔORF1/71 vs. controls, and

c = Ab4 vs. Ab4ΔORF1/71.

(TIF)

S3 Fig. Cytokines in serum after infection with EHV-1 Ab4 or Ab4ΔORF1/71. Horses

(n = 5 per group) were infected on d0 (arrow). A non-infected control group was included.

Serum samples were obtained several times before and after infection. Cytokines and sCD14

were evaluated with fluorescent bead-based assays. Mean and standard errors of (A) sCD14

and (B) IFN-γ in serum are displayed. Significant differences between groups: a = Ab4 vs. con-

trols, b = Ab4ΔORF1/71 vs. controls, and c = Ab4 vs. Ab4ΔORF1/71.

(TIF)
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22. Bürki F, Rossmanith W, Nowotny N, Pallan C, Möstl K, Lussy H. Viraemia and abortions are not pre-

vented by two commercial Equine Herpesvirus-1 vaccines after experimental challenge of horses. Vet

Quart. 1990; 12:80–6.

23. Matsumura T, O’Callaghan DJ, Kondo T, Kamada M. Lack of virulence of the murine fibroblast adapted

strain, Kentucky A (KyA), of equine herpesvirus type 1 (EHV-1) in young horses. Vet Microbiol. 1996;

48:353–65. PMID: 9054131

24. Matsumura T, Kondo T, Sugita S, Damiani AM, O’Callaghan DJ, Imagawa H. An equine herpesvirus

type 1 recombinant with a deletion in the gE and gI genes is avirulent in young horses. Virol. 1998;

242:68–79.

25. Hussey GS, Hussey SB, Wagner B, Horohov DW, Van de Walle GR, Osterrieder N, et al. Evaluation of

immune responses following infection of ponies with an EHV-1 ORF1/2 deletion mutant. Vet Res. 2011;

42:23. https://doi.org/10.1186/1297-9716-42-23 PMID: 21314906

26. Ma G, Feineis S, Osterrieder N, Van de Walle GR. Identification and characterization of equine herpes-

virus type 1 pUL56 and its role in virus-induced downregulation of major histocompatibility complex

class I. J Virol. 2012; 86:3554–63. https://doi.org/10.1128/JVI.06994-11 PMID: 22278226

27. Hussey GS, Ashton LV, Quintana AM, Lunn DP, Van de Walle GR, Osterrieder N, et al. Equine herpes-

virus type 1 pUL56 modulates innate responses of airway epithelial cells. Virol. 2014; 464–465:76–86.

28. Allen GP, Yeargan MR. Use of lambda gt11 and monoclonal antibodies to map the genes for the six

major glycoproteins of equine herpesvirus 1. J Virol. 1987; 61:2454–61. PMID: 3037108

29. Whittaker GR, Wheldon LA, Giles LE, Stocks JM, Halliburton IW, Killington RA, et al. Characterization

of the high Mr glycoprotein (gP300) of equine herpesvirus type 1 as a novel glycoprotein with extensive

O-linked carbohydrate. J Gen Virol. 1990; 71:2407–16. https://doi.org/10.1099/0022-1317-71-10-2407

PMID: 2172454

30. Colle CF, Flowers CC, O’Callaghan DJ. Open reading frames encoding a protein kinase, homolog of

glycoprotein gX of pseudorabies virus, and a novel glycoprotein map within the unique short segment of

equine herpesvirus type 1. Virol. 1992; 188:545–57.

31. von Einem J, Wellington J, Whalley JM, Osterrieder K, O’Callaghan DJ, Osterrieder N. The truncated

form of glycoprotein gp2 of equine herpesvirus 1 (EHV-1) vaccine strain KyA is not functionally equiva-

lent to full-length gp2 encoded by EHV-1 wild-type strain RacL11. J Virol. 2004; 78:3003–13. https://doi.

org/10.1128/JVI.78.6.3003-3013.2004 PMID: 14990719

32. Wellington JE, Allen GP, Gooley AA, Love DN, Packer NH, Yan JX, et al. The highly O-glycosylated gly-

coprotein gp2 of equine herpesvirus 1 is encoded by gene 71. J Virol. 1996; 70:8195–8. PMID: 8892952

33. Telford EA, Watson MS, Perry J, Cullinane AA, Davison AJ. The DNA sequence of equine herpesvirus-

4. J Gen Virol. 1998; 79:1197–203. https://doi.org/10.1099/0022-1317-79-5-1197 PMID: 9603335

34. Osterrieder N, Kaaden OR, Neubauer A. Structure and function of equine herpesvirus glycoproteins—a

review. Proceedings of the 8th International Conference on Equine Infectious Diseases. R&W Publica-

tions 1999 (pp. 111–118).

35. Crabb BS, Allen GP, Studdert MJ. Characterization of the major glycoproteins of equine herpesviruses

4 and 1 and asinine herpesvirus 3 using monoclonal antibodies. J Gen Virol. 1991; 72:2075–82. https://

doi.org/10.1099/0022-1317-72-9-2075 PMID: 1716650

36. Fukushi H, Yamaguchi T, Yamada S. Complete genome sequence of equine herpesvirus type 9. J

Virol. 2012 Dec; 86:13822. https://doi.org/10.1128/JVI.02607-12 PMID: 23166237

37. Sun Y, MacLean AR, Aitken JD, Brown SM. The role of the gene 71 product in the life cycle of equine

herpesvirus 1. J Gen Virol. 1996; 77:493–500. https://doi.org/10.1099/0022-1317-77-3-493 PMID:

8601787

38. Smith PM, Kahan SM, Rorex CB, von Einem J, Osterrieder N, O’Callaghan DJ. Expression of the full-

length form of gp2 of equine herpesvirus 1 (EHV-1) completely restores respiratory virulence to the

attenuated EHV-1 strain KyA in CBA mice. J Virol. 2005; 79:5105–15. https://doi.org/10.1128/JVI.79.8.

5105-5115.2005 PMID: 15795295

39. Rudolph J, O’Callaghan DJ, Osterrieder N. Cloning of the Genomes of Equine Herpesvirus Type 1

(EHV-1) Strains KyA and RacL11 as Bacterial Artificial Chromosomes (BAC). Zoonoses Public Health.

2002; 49:31–6.

40. Rudolph J, Osterrieder N. Equine herpesvirus type 1 devoid of gM and gp2 is severely impaired in virus

egress but not direct cell-to-cell spread. Virol. 2002; 293:356–67.

41. Marshall KR, Sun Y, Brown SM, Field HJ. An equine herpesvirus-1 gene 71 deletant is attenuated and

elicits a protective immune response in mice. Virol. 1997; 231:20–7.

42. Animal Health Information; Iceland; Diseases never reported. WAHID Interface. 2016; Available from:

http://www.oie.int/wahis_2/public/wahid.php/Countryinformation/Animalsituation

Deletion of ORF1 and ORF71 genes of EHV-1 reduces virulence

PLOS ONE | https://doi.org/10.1371/journal.pone.0206679 November 15, 2018 23 / 25

http://www.ncbi.nlm.nih.gov/pubmed/9054131
https://doi.org/10.1186/1297-9716-42-23
http://www.ncbi.nlm.nih.gov/pubmed/21314906
https://doi.org/10.1128/JVI.06994-11
http://www.ncbi.nlm.nih.gov/pubmed/22278226
http://www.ncbi.nlm.nih.gov/pubmed/3037108
https://doi.org/10.1099/0022-1317-71-10-2407
http://www.ncbi.nlm.nih.gov/pubmed/2172454
https://doi.org/10.1128/JVI.78.6.3003-3013.2004
https://doi.org/10.1128/JVI.78.6.3003-3013.2004
http://www.ncbi.nlm.nih.gov/pubmed/14990719
http://www.ncbi.nlm.nih.gov/pubmed/8892952
https://doi.org/10.1099/0022-1317-79-5-1197
http://www.ncbi.nlm.nih.gov/pubmed/9603335
https://doi.org/10.1099/0022-1317-72-9-2075
https://doi.org/10.1099/0022-1317-72-9-2075
http://www.ncbi.nlm.nih.gov/pubmed/1716650
https://doi.org/10.1128/JVI.02607-12
http://www.ncbi.nlm.nih.gov/pubmed/23166237
https://doi.org/10.1099/0022-1317-77-3-493
http://www.ncbi.nlm.nih.gov/pubmed/8601787
https://doi.org/10.1128/JVI.79.8.5105-5115.2005
https://doi.org/10.1128/JVI.79.8.5105-5115.2005
http://www.ncbi.nlm.nih.gov/pubmed/15795295
http://www.oie.int/wahis_2/public/wahid.php/Countryinformation/Animalsituation
https://doi.org/10.1371/journal.pone.0206679


43. Nugent J, Birch-Machin I, Smith KC, Mumford JA, Swann Z, Newton JR, et al. Analysis of equid herpes-

virus 1 strain variation reveals a point mutation of the DNA polymerase strongly associated with neuro-

pathogenic versus nonneuropathogenic disease outbreaks. J Virol. 2006; 80:4047–60. https://doi.org/

10.1128/JVI.80.8.4047-4060.2006 PMID: 16571821

44. Crowhurst FA, Dickinson G, Burrows R. An outbreak of paresis in mares and geldings associated with

equid herpesvirus 1. Vet Record. 1981; 109:527–8.

45. Wimer CL, Damiani A, Osterrieder N, Wagner B. Equine herpesvirus type-1 modulates CCL2, CCL3,

CCL5, CXCL9, and CXCL10 chemokine expression. Vet Immunol Immunopathol. 2011; 140:266–74.

https://doi.org/10.1016/j.vetimm.2011.01.009 PMID: 21349590

46. Furr M, Reed S. Neurologic Examination. In: Equine Neurology. Ames, IA: Blackwell Publishing,

2008. pp. 65–76.

47. Elia G, Decaro N, Martella V, Campolo M, Desario C, Lorusso E, et al. Detection of equine herpesvirus

type 1 by real time PCR. J Virolog Meth. 2006; 133:70–5.

48. Wagner B, Hillegas JM, Babasyan S. Monoclonal antibodies to equine CD23 identify the low-affinity

receptor for IgE on subpopulations of IgM+ and IgG1+ B-cells in horses. Vet Immunol Immunopathol.

2012; 146:125–34. https://doi.org/10.1016/j.vetimm.2012.02.007 PMID: 22405681

49. Sheoran AS, Sponseller BT, Holmes MA, Timoney JF. Serum and mucosal antibody isotype responses

to M-like protein (SeM) of Streptococcus equi in convalescent and vaccinated horses. Vet Immunol

Immunopathol. 1997; 59:239–51. PMID: 9477475

50. Wagner B, Burton A, Ainsworth D. Interferon-gamma, interleukin-4 and interleukin-10 production by T

helper cells reveals intact Th1 and regulatory TR1 cell activation and a delay of the Th2 cell response in

equine neonates and foals. Vet Res. 2010; 41:47. https://doi.org/10.1051/vetres/2010019 PMID:

20374696

51. Perkins GA, Goodman LB, Wimer C, Freer H, Babasyan S, Wagner B. Maternal T-lymphocytes in

equine colostrum express a primarily inflammatory phenotype. Vet Immunol Immunopathol. 2014;

161:141–50. https://doi.org/10.1016/j.vetimm.2014.07.009 PMID: 25174977

52. Wagner B, Freer H. Development of a bead-based multiplex assay for simultaneous quantification of

cytokines in horses. Vet Immunol Immunopathol. 2009; 127:242–8. https://doi.org/10.1016/j.vetimm.

2008.10.313 PMID: 19027964

53. Wagner B, Ainsworth DM, Freer H. Analysis of soluble CD14 and its use as a biomarker in neonatal

foals with septicemia and horses with recurrent airway obstruction. Vet Immunol Immunopathol. 2013;

155:124–8. https://doi.org/10.1016/j.vetimm.2013.05.018 PMID: 23810420

54. Smith PM, Kahan SM, Rorex CB, von Einem J, Osterrieder N, O’Callaghan DJ. Expression of the full-

length form of gp2 of equine herpesvirus 1 (EHV-1) completely restores respiratory virulence to the

attenuated EHV-1 strain KyA in CBA mice. J Virol. 2005; 79(8):5105–15. https://doi.org/10.1128/JVI.79.

8.5105-5115.2005 PMID: 15795295

55. Pusterla N, Hussey GS. Equine herpesvirus 1 myeloencephalopathy. Vet Clinics: Equine Pract. 2014;

30:489–506.

56. Barbić L, Lojkić I, Stevanović V, Bedeković T, Starešina V, Lemo N, et al. Two outbreaks of neuropatho-
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