40 research outputs found

    A novel N-terminal extension in mitochondrial TRAP1 serves as a thermal regulator of chaperone activity.

    Get PDF
    Hsp90 is a conserved chaperone that facilitates protein homeostasis. Our crystal structure of the mitochondrial Hsp90, TRAP1, revealed an extension of the N-terminal β-strand previously shown to cross between protomers in the closed state. In this study, we address the regulatory function of this extension or 'strap' and demonstrate its responsibility for an unusual temperature dependence in ATPase rates. This dependence is a consequence of a thermally sensitive kinetic barrier between the apo 'open' and ATP-bound 'closed' conformations. The strap stabilizes the closed state through trans-protomer interactions. Displacement of cis-protomer contacts from the apo state is rate-limiting for closure and ATP hydrolysis. Strap release is coupled to rotation of the N-terminal domain and dynamics of the nucleotide binding pocket lid. The strap is conserved in higher eukaryotes but absent from yeast and prokaryotes suggesting its role as a thermal and kinetic regulator, adapting Hsp90s to the demands of unique cellular and organismal environments

    The stem cell organisation, and the proliferative and gene expression profile of Barrett's epithelium, replicates pyloric-type gastric glands

    Get PDF
    Objective: Barrett's oesophagus shows appearances described as ‘intestinal metaplasia’, in structures called ‘crypts’ but do not typically display crypt architecture. Here, we investigate their relationship to gastric glands. Methods: Cell proliferation and migration within Barrett's glands was assessed by Ki67 and iododeoxyuridine (IdU) labelling. Expression of mucin core proteins (MUC), trefoil family factor (TFF) peptides and LGR5 mRNA was determined by immunohistochemistry or by in situ hybridisation, and clonality was elucidated using mitochondrial DNA (mtDNA) mutations combined with mucin histochemistry. Results: Proliferation predominantly occurs in the middle of Barrett's glands, diminishing towards the surface and the base: IdU dynamics demonstrate bidirectional migration, similar to gastric glands. Distribution of MUC5AC, TFF1, MUC6 and TFF2 in Barrett's mirrors pyloric glands and is preserved in Barrett's dysplasia. MUC2-positive goblet cells are localised above the neck in Barrett's glands, and TFF3 is concentrated in the same region. LGR5 mRNA is detected in the middle of Barrett's glands suggesting a stem cell niche in this locale, similar to that in the gastric pylorus, and distinct from gastric intestinal metaplasia. Gastric and intestinal cell lineages within Barrett's glands are clonal, indicating derivation from a single stem cell. Conclusions: Barrett's shows the proliferative and stem cell architecture, and pattern of gene expression of pyloric gastric glands, maintained by stem cells showing gastric and intestinal differentiation: neutral drift may suggest that intestinal differentiation advances with time, a concept critical for the understanding of the origin and development of Barrett's oesophagus

    Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors.

    Get PDF
    The Cre-loxP system is invaluable for spatial and temporal control of gene knockout, knockin, and reporter expression in the mouse nervous system. However, we report varying probabilities of unexpected germline recombination in distinct Cre driver lines designed for nervous system-specific recombination. Selective maternal or paternal germline recombination is showcased with sample Cre lines. Collated data reveal germline recombination in over half of 64 commonly used Cre driver lines, in most cases with a parental sex bias related to Cre expression in sperm or oocytes. Slight differences among Cre driver lines utilizing common transcriptional control elements affect germline recombination rates. Specific target loci demonstrated differential recombination; thus, reporters are not reliable proxies for another locus of interest. Similar principles apply to other recombinase systems and other genetically targeted organisms. We hereby draw attention to the prevalence of germline recombination and provide guidelines to inform future research for the neuroscience and broader molecular genetics communities

    A Systems Biology Approach Identifies Molecular Networks Defining Skeletal Muscle Abnormalities in Chronic Obstructive Pulmonary Disease

    Get PDF
    Chronic Obstructive Pulmonary Disease (COPD) is an inflammatory process of the lung inducing persistent airflow limitation. Extensive systemic effects, such as skeletal muscle dysfunction, often characterize these patients and severely limit life expectancy. Despite considerable research efforts, the molecular basis of muscle degeneration in COPD is still a matter of intense debate. In this study, we have applied a network biology approach to model the relationship between muscle molecular and physiological response to training and systemic inflammatory mediators. Our model shows that failure to co-ordinately activate expression of several tissue remodelling and bioenergetics pathways is a specific landmark of COPD diseased muscles. Our findings also suggest that this phenomenon may be linked to an abnormal expression of a number of histone modifiers, which we discovered correlate with oxygen utilization. These observations raised the interesting possibility that cell hypoxia may be a key factor driving skeletal muscle degeneration in COPD patients

    Innovative Education and Training in high power laser plasmas (PowerLaPs) for plasma physics, high power laser-matter interactions and high energy density physics - Theory and experiments

    Get PDF
    The Erasmus Plus programme 'Innovative Education and Training in high power laser plasmas', otherwise known as PowerLaPs, is described. The PowerLaPs programme employs an innovative paradigm in that it is a multi-centre programme where teaching takes place in five separate institutes with a range of different aims and styles of delivery. The 'in class' time is limited to four weeks a year, and the programme spans two years. PowerLaPs aims to train students from across Europe in theoretical, applied and laboratory skills relevant to the pursuit of research in laser-plasma interaction physics and inertial confinement fusion (ICF). Lectures are intermingled with laboratory sessions and continuous assessment activities. The programme, which is led by workers from the Technological Educational Institute (TEI) of Crete, and supported by co-workers from the Queen's University Belfast, the University of Bordeaux, the Czech Technical University in Prague, Ecole Polytechnique, the University of Ioannina, the University of Salamanca and the University of York, has just completed its first year. Thus far three Learning Teaching Training (LTT) activities have been held, at the Queen's University Belfast, the University of Bordeaux and the Centre for Plasma Physics and Lasers (CPPL) of TEI Crete. The last of these was a two-week long Intensive Programme (IP), while the activities at the other two universities were each five days in length. Thus far work has concentrated upon training in both theoretical and experimental work in plasma physics, high power laser-matter interactions and high energy density physics. The nature of the programme will be described in detail and some metrics relating to the activities carried out to date will be presented

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Molecular Cell Article Substrate Binding Drives Large-Scale Conformational Changes in the Hsp90 Molecular Chaperone

    No full text
    Hsp90 is a ubiquitous molecular chaperone. Previous structural analysis demonstrated that Hsp90 can adopt a large number of structurally distinct conformations; however, the functional role of this flexibility is not understood. Here we investigate the structural consequences of substrate binding with a model system in which Hsp90 interacts with a partially folded protein (D131D), a well-studied fragment of staphylococcal nuclease. SAXS measurements reveal that under apo conditions, Hsp90 partially closes around D131D, and in the presence of AMPPNP, D131D binds with increased affinity to Hsp90’s fully closed state. FRET measurements show that D131D accelerates the nucleotide-driven open/closed transition and stimulates ATP hydrolysis by Hsp90. NMR measurements reveal that Hsp90 binds to a specific, highly structured region of D131D. These results suggest that Hsp90 preferentially binds a locally structured region in a globally unfolded protein, and this binding drives functional changes in the chaperone by lowering a rate-limiting conformational barrier
    corecore