139 research outputs found

    Patient-oriented and performance-based outcomes after knee autologous chondrocyte implantation: a timeline for the first year of recovery

    Get PDF
    It is well established that autologous chondrocyte implantation (ACI) can require extended recovery postoperatively; however, little information exists to provide clinicians and patients with a timeline for anticipated function during the first year after ACI. Objective: To document the recovery of functional performance of activities of daily living after ACI. Patients: ACI patients (n = 48, 29 male 35.1 ± 8.0 y). Intervention: All patients completed functional tests (weight-bearing squat, walk-across, sit-to-stand, step-up/over, and forward lunge) using the NeuroCom long force plate (Clackamas, OR) and completed patient-reported outcome measures (International Knee Documentation Committee Subjective Knee Evaluation Form, Lysholm, Western Ontario and McMaster Osteoarthritis Index WOMAC, and 36-Item Short-Form Health Survey) preoperatively and 3, 6, and 12 mo postoperatively. Main Outcome Measures: A covariance pattern model was used to compare performance and self-reported outcome across time and provide a timeline for functional recovery after ACI. Results: Participants demonstrated significant improvement in walk-across stride length from baseline (42.0% ± 8.9% height) at 6 (46.8% ± 8.1%) and 12 mo (46.6% ± 7.6%). Weight bearing on the involved limb during squatting at 30°, 60°, and 90° was significantly less at 3 mo than presurgery. Step-up/over time was significantly slower at 3 mo (1.67 ± 0.69 s) than at baseline (1.49 ± 0.33 s), 6 mo (1.51 ± 0.36 s), and 12 mo (1.40 ± 0.26 s). Step-up/over lift-up index was increased from baseline (41.0% ± 11.3% body weight BW) at 3 (45.0% ± 11.7% BW), 6 (47.0% ± 11.3% BW), and 12 mo (47.3% ± 11.6% BW). Forward-lunge time was decreased at 3 mo (1.51 ± 0.44 s) compared with baseline (1.39 ± 0.43 s), 6 mo (1.32 ± 0.05 s), and 12 mo (1.27 ± 0.06). Similarly, forward-lunge impact force was decreased at 3 mo (22.2% ± 1.4% BW) compared with baseline (25.4% ± 1.5% BW). The WOMAC demonstrated significant improvements at 3 mo. All patient-reported outcomes were improved from baseline at 6 and 12 mo postsurgery. Conclusions: Patients' perceptions of improvements may outpace physical changes in function. Decreased function for at least the first 3 mo after ACI should be anticipated, and improvement in performance of tasks requiring weight-bearing knee flexion, such as squatting, going down stairs, or lunging, may not occur for a year or more after surgery

    Comparing Responsiveness of Six Common Patient-Reported Outcomes to Changes Following Autologous Chondrocyte Implantation: A Systematic Review and Meta-Analysis of Prospective Studies

    Get PDF
    Objective: To compare the responsiveness of six common patient-reported outcomes (PROs) following autologous chondrocyte implantation (ACI). Design: A systematic search was conducted to identify reports of PROs following ACI. Study quality was evaluated using the modified Coleman Methodology Score (mCMS). For each outcome score, pre- to postoperative paired Hedge\u27s g effect sizes were calculated with 95% confidence intervals (CIs). Random effects meta-analyses were performed to provide a summary response for each PRO at time points (TP) I (\u3c1 year), II (1 year to \u3c2 years), III (2 years to \u3c4 years), IV (\u3e= 4 years), and overall. Results: The mean mCMS for the 42 articles included was 50.9 +/- 9.2. For all evaluated instruments, none of the mean effect size CIs encompassed zero. The International Knee Documentation Committee Subjective Knee Form (IKDC) had increasing responsiveness over time with TP-IV, demonstrating greater mean effect size [confidence interval] (1.78 [1.33, 2.24]) than TP-I (0.88 [0.69, 1.07]). The Knee Injury and Osteoarthritis Outcome Score-Sports and recreation subscale (KOOS-Sports) was more responsive at TP-III (1.76 [0.87, 2.64]) and TP-IV (0.98 [0.81, 1.15]) than TP-I (0.61 [0.44, 0.78]). Overall, the Medical Outcomes Study 36-Item Short Form Health Survey Physical Component Scale (0.60 [0.46, 0.74]) was least responsive. Both the Lysholm Scale (1.42 [1.14, 1.72]) and the IKDC (1.37 [1.13, 1.62]) appear more responsive than the KOOS-Sports (0.90 [0.73, 1.07]). All other KOOS subscales had overall effect sizes ranging from 0.90 (0.74, 1.22) (Symptoms) to 1.15 (0.76, 1.54) (Quality of Life). Conclusions: All instruments were responsive to improvements in function following ACI. The Lysholm and IKDC were the most responsive instruments across time. IKDC and KOOS-Sports may be more responsive to long-term outcomes, especially among active individuals

    Measuring the deformation of a ferrogel sphere in a homogeneous magnetic field

    Full text link
    A sphere of a ferrogel is exposed to a homogeneous magnetic field. In accordance to theoretical predictions, it gets elongated along the field lines. The time-dependence of the elastic shear modulus causes the elongation to increase with time analogously to mechanic creep experiments, and the rapid excitation causes the sphere to vibrate. Both phenomena can be well described by a damped harmonic oscillator model. By comparing the elongation along the field with the contraction perpendicular to it, we can calculate Poisson's ratio of the gel. The magnitude of the elongation is compared with the theoretical predictions for elastic spheres in homogeneous fields.Comment: 5 pages, 8 figure

    Multimodal nonlinear imaging of atherosclerotic plaques differentiation of triglyceride and cholesterol deposits

    Get PDF
    Cardiovascular diseases in general and atherothrombosis as the most common of its individual disease entities is the leading cause of death in the developed countries. Therefore, visualization and characterization of inner arterial plaque composition is of vital diagnostic interest, especially for the early recognition of vulnerable plaques. Established clinical techniques provide valuable morphological information but cannot deliver information about the chemical composition of individual plaques. Therefore, spectroscopic imaging techniques have recently drawn considerable attention. Based on the spectroscopic properties of the individual plaque components, as for instance different types of lipids, the composition of atherosclerotic plaques can be analyzed qualitatively as well as quantitatively. Here, we compare the feasibility of multimodal nonlinear imaging combining two-photon fluorescence (TPF), coherent anti-Stokes Raman scattering (CARS) and second-harmonic generation (SHG) microscopy to contrast composition and morphology of lipid deposits against the surrounding matrix of connective tissue with diffraction limited spatial resolution. In this contribution, the spatial distribution of major constituents of the arterial wall and atherosclerotic plaques like elastin, collagen, triglycerides and cholesterol can be simultaneously visualized by a combination of nonlinear imaging methods, providing a powerful label-free complement to standard histopathological methods with great potential for in vivo application

    An Expert Consensus Statement on the Management of Large Chondral and Osteochondral Defects in the Patellofemoral Joint

    Get PDF
    © The Author(s) 2020. Background: Cartilage lesions of the patellofemoral joint constitute a frequent abnormality. Patellofemoral conditions are challenging to treat because of complex biomechanics and morphology. Purpose: To develop a consensus statement on the functional anatomy, indications, donor graft considerations, surgical treatment, and rehabilitation for the management of large chondral and osteochondral defects in the patellofemoral joint using a modified Delphi technique. Study Design: Consensus statement. Methods: A working group of 4 persons generated a list of statements related to the functional anatomy, indications, donor graft considerations, surgical treatment, and rehabilitation for the management of large chondral and osteochondral defects in the patellofemoral joint to form the basis of an initial survey for rating by a group of experts. The Metrics of Osteochondral Allografts (MOCA) expert group (composed of 28 high-volume cartilage experts) was surveyed on 3 occasions to establish a consensus on the statements. In addition to assessing agreement for each included statement, experts were invited to propose additional statements for inclusion or to suggest modifications of existing statements with each round. Predefined criteria were used to refine statement lists after each survey round. Statements reaching a consensus in round 3 were included within the final consensus document. Results: A total of 28 experts (100% response rate) completed 3 rounds of surveys. After 3 rounds, 36 statements achieved a consensus, with over 75% agreement and less than 20% disagreement. A consensus was reached in 100.00% of the statements relating to functional anatomy of the patellofemoral joint, 88.24% relating to surgical indications, 100.00% relating to surgical technical aspects, and 100.00% relating to rehabilitation, with an overall consensus of 95.5%. Conclusion: This study established a strong expert consensus document relating to the functional anatomy, surgical indications, donor graft considerations for osteochondral allografts, surgical technical aspects, and rehabilitation concepts for the management of large chondral and osteochondral defects in the patellofemoral joint. Further research is required to clinically validate the established consensus statements and better understand the precise indications for surgery as well as which techniques and graft processing/preparation methods should be used based on patient- and lesion-specific factors

    Resolving the Combinatorial Complexity of Smad Protein Complex Formation and Its Link to Gene Expression.

    Get PDF
    Upon stimulation of cells with transforming growth factor beta (TGF-beta), Smad proteins form trimeric complexes and activate a broad spectrum of target genes. It remains unresolved which of the possible Smad complexes are formed in cellular contexts and how these contribute to gene expression. By combining quantitative mass spectrometry with a computational selection strategy, we predict and provide experimental evidence for the three most relevant Smad complexes in the mouse hepatoma cell line Hepa1-6. Utilizing dynamic pathway modeling, we specify the contribution of each Smad complex to the expression of representative Smad target genes, and show that these contributions are conserved in human hepatoma cell lines and primary hepatocytes. We predict, based on gene expression data of patient samples, increased amounts of Smad2/3/4 proteins and Smad2 phosphorylation as hallmarks of hepatocellular carcinoma and experimentally verify this prediction. Our findings demonstrate that modeling approaches can disentangle the complexity of transcription factor complex formation and its impact on gene expression

    Osteointegration of soft tissue grafts within the bone tunnels in anterior cruciate ligament reconstruction can be enhanced

    Get PDF
    Anterior cruciate ligament reconstruction with a soft tissue autograft (hamstring autograft) has grown in popularity in the last 10 years. However, the issues of a relatively long healing time and an inferior histological healing result in terms of Sharpey-like fibers connection in soft tissue grafts are still unsolved. To obtain a promising outcome in the long run, prompt osteointegration of the tendon graft within the bone tunnel is essential. In recent decades, numerous methods have been reported to enhance osteointegration of soft tissue graft in the bone tunnel. In this article, we review the current literature in this research area, mainly focusing on strategies applied to the local bone tunnel environment. Biological strategies such as stem cell and gene transfer technology, as well as the local application of specific growth factors have been reported to yield exciting results. The use of biological bone substitute and physical stimulation also obtained promising results. Artificially engineered tissue has promise as a solution to the problem of donor site morbidity. Despite these encouraging results, the current available evidence is still experimental. Further clinical studies in terms of randomized control trial in the future should be conducted to extrapolate these basic science study findings into clinical practice. © 2009 Springer-Verlag.postprin

    The subchondral bone in articular cartilage repair: current problems in the surgical management

    Get PDF
    As the understanding of interactions between articular cartilage and subchondral bone continues to evolve, increased attention is being directed at treatment options for the entire osteochondral unit, rather than focusing on the articular surface only. It is becoming apparent that without support from an intact subchondral bed, any treatment of the surface chondral lesion is likely to fail. This article reviews issues affecting the entire osteochondral unit, such as subchondral changes after marrow-stimulation techniques and meniscectomy or large osteochondral defects created by prosthetic resurfacing techniques. Also discussed are surgical techniques designed to address these issues, including the use of osteochondral allografts, autologous bone grafting, next generation cell-based implants, as well as strategies after failed subchondral repair and problems specific to the ankle joint. Lastly, since this area remains in constant evolution, the requirements for prospective studies needed to evaluate these emerging technologies will be reviewed

    Seaweed polysaccharide-based hydrogels used for the regeneration of articular cartilage

    Get PDF
    This manuscript provides an overview of the in vitro and in vivo studies reported in the literature focusing on seaweed polysaccharides based hydrogels that have been proposed for applications in regenerative medicine, particularly, in the field of cartilage tissue engineering. For a better understanding of the main requisites for these specific applications, the main aspects of the native cartilage structure, as well as recognized diseases that affect this tissue are briefly described. Current available treatments are also presented to emphasize the need for alternative techniques. The following part of this review is centered on the description of the general characteristics of algae polysaccharides, as well as relevant properties required for designing hydrogels for cartilage tissue engineering purposes. An in-depth overview of the most well known seaweed polysaccharide, namely agarose, alginate, carrageenan and ulvan biopolymeric gels, that have been proposed for engineering cartilage is also provided. Finally, this review describes and summarizes the translational aspect for the clinical application of alternative systems emphasizing the importance of cryopreservation and the commercial products currently available for cartilage treatment.Authors report no declarations of interest. Authors thank the Portuguese Foundation for Science and Technology (FCT) for the PhD fellowship of Elena G. Popa (SFRH/BD/64070/2009) and research project (MIT/ECE/0047/2009). The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no REGPOT-CT2012-316331-POLARIS
    corecore