95 research outputs found

    DEDALO: Application of structural health monitoring systems on UHTC structures

    Get PDF
    In aerospace applications the development of a reliable method of structural health monitoring (SHM) is one of the most important keys in maintaining the integrity and safety of structures, preventing catastrophic failure. The research program DEDALO aims at developing a real size UHTC-based prototype with a complex shape equipped with a SHM system for damage detection. A multidisciplinary approach has been adopted involving mechanical design, materials science, manufacturing processes and development of optical devices to detect strain and temperature on the as-produced UHTC articles. Former activities merged into the manufacturing of a prototype hot structure supplied with optical sensing nodes to perform a functional test at high temperature. This communication describes the preliminary findings of the project. A series of ZrB2-SiC based compositions was studied adjusting type, concentration and granulometry of reinforcing phases and additives to further identify the optimal composition for the hot structure. The pressureless sintering technique was selected privileging a near-net-shape approach to reduce the manufacturing costs. A SHM system was developed using commercial high temperature Fiber optic Bragg Grating (FBG), for thermal monitoring, and custom silica-sapphire fiber optic strain sensor, based on Fabry-P?rot configuration, allowing simultaneous and real time measurement of temperature and structural loads applied on the structure under investigation. A ceramic flexible structure was developed to ease sensor installation procedure on complex shape test articles. The fiber optic sensors interrogation system was developed based on a tunable laser source. Thermal and mechanical tests showed sensor robustness at high temperature and 0,6 μ-epsilon as accuracy on strain measurement up to 800?C. Tile-shaped hot structures were manufactured, equipped with the prototype Structural Health Monitoring System (SHMS) and functionally tested at high temperature. The project will undergo a second iterative loop which foresees investigation on the final test article: a ZrB2-SiC based composite hollow ti

    Efficient and reversible CO2 capture in bio-based ionic liquids solutions

    Get PDF
    Choline/amino acid-based ionic liquids were synthetized via ionic metathesis and their CO2 absorption performances evaluated by employing different experimental approaches. In order to overcome any viscosity-related problem, dimethyl sulfoxide (DMSO) was employed as solvent. IL-DMSO solutions with different IL concentrations were evaluated as absorbents for CO2, also investigating their good cyclability as desirable for real industrial CO2 capture technologies. 1H-NMR and in-situ ATR-IR experiments were the toolbox to study the CO2 chemical fixation mechanism under different experimental conditions, proving the formation of distinct chemical species (carbamic acid and/or ammonium carbamate). In general, these ILs demonstrated molar uptakes higher than classical 0.5 mol CO2/mol IL and the capacity to release CO2 in extremely mild conditions. The possible biological adverse effects were also analyzed, for the first time, in zebrafish (Danio rerio) during the development, by assessing for different toxicological endpoints, proving the non-toxicity and high biocompatibility of these bio-inspired ILs

    SPECTROModule: A modular in-situ spectroscopy platform for exobiology and space sciences

    Get PDF
    The evolution of the solar system and the origin of life remain some of the most intriguing questions for humankind. Addressing these questions experimentally is challenging due to the difficulty of mimicking environmental conditions representative for Early Earth and/or space conditions in general in ground-based laboratories. Performing experiments directly in space offers the great chance to overcome some of these obstacles and to possibly find answers to these questions. Exposure platforms in Low Earth Orbit (LEO) with the possibility for long-duration solar exposure are ideal for investigating the effects of solar and cosmic radiation on various biological and non-biological samples. Up to now, the Exobiology and space science research community has successfully made use of the International Space Station (ISS) via the EXPOSE facility to expose samples to the space environment with subsequent analyses after return to Earth. The emerging small and nanosatellite market represents another opportunity for astrobiology research as proven by the robotic O/OREOS mission, where samples were monitored in-situ, i.e. in Earth orbit. In this framework, the European Space Agency is developing a novel Exobiology facility outside the ISS. The new platform, which can host up to four different experiments, will combine the advantages of the ISS (long-term exposure, sample return capability) with near-real-time in-situ monitoring of the chemical/biological evolution in space. In particular, ultraviolet–visible (UV–Vis) and infrared (IR) spectroscopy were considered as key non-invasive methods to analyse the samples in situ. Changes in the absorption spectra of the samples developing over time will reveal the chemical consequences of exposure to solar radiation. Simultaneously, spectroscopy provides information on the growth rate or metabolic activities of biological cultures. The first quartet of experiments to be performed on-board consists of IceCold, OREOcube and Exocube (dual payload consisting of ExocubeChem and ExocubeBio). To prepare for the development of the Exobiology facility, ground units of the UV–Vis and IR spectrometers were studied, manufactured and tested as precursors of the flight units. The activity led to a modular in-situ spectroscopy platform able to perform different measurements (e.g. absorbance, optical density, fluorescence measurements) at the same time on different samples. We describe here the main features of the ground model platform, the verification steps, results and approach followed in the customization of commercial–off-the-shelf (COTS) modules to make them suitable for the space environment. The environmental tests included random and shock vibration, thermal vacuum cycles in the range −20 °C to +40 °C and irradiation of the components with a total dose of 1800 rad (18 Gy). The results of the test campaign consolidated the selection of the optical devices for the Exobiology Facility. The spectroscopic performance of the optical layout was tested and benchmarked in comparison with state-of-the-art laboratory equipment and calibration standards showing good correlation. This includes spectra of samples sets relevant for the flight experiments and a performance comparison between the SPECTROModule ground model and state-of-the-art laboratory spectrometers. Considering the large number of samples and different types of optical measurements planned on-board the ISS, the main outcome was the implementation of an LED-photodiode layout for the optical density and fluorescence measurements of IceCold (42 samples) and ExocubeBio (111 samples); while the UV–Vis spectrometer will be mainly focused on the change of the absorption spectra of the 48 samples of OREOcube.The ExocubeChem samples (in total 48) will be analysed by infrared spectroscopy. The ground platform supports the establishment of analogue research capabilities able to address the long-term objectives beyond the current application

    Evaluating the impact of hydrometeorological conditions on E. coli concentration in farmed mussels and clams: experience in Central Italy.

    Get PDF
    Abstract Highly populated coastal environments receive large quantities of treated and untreated wastewater from human and industrial sources. Bivalve molluscs accumulate and retain contaminants, and their analysis provides evidence of past contamination. Rivers and precipitation are major routes of bacteriological pollution from surface or sub-surface runoff flowing into coastal areas. However, relationships between runoff, precipitation, and bacterial contamination are site-specific and dependent on the physiographical characteristics of each catchment. In this work, we evaluated the influence of precipitation and river discharge on molluscs' Escherichia coli concentrations at three sites in Central Italy, aiming at quantifying how hydrometeorological conditions affect bacteriological contamination of selected bivalve production areas. Rank-order correlation analysis indicated a stronger association between E. coli concentrations and the modelled Pescara River discharge maxima (r = 0.69) than between E. coli concentration and rainfall maxima (r = 0.35). Discharge peaks from the Pescara River caused an increase in E. coli concentration in bivalves in 87% of cases, provided that the runoff peak occurred 1–6 days prior to the sampling date. Precipitation in coastal area was linked to almost 60% of cases of E. coli high concentrations and may enhance bacterial transportation offshore, when associated with a larger-scale weather system, which causes overflow occurrence

    Copeptin levels are associated with organ dysfunction and death in the intensive care unit after out-of-hospital cardiac arrest

    Get PDF
    Introduction: We studied associations of the stress hormones copeptin and cortisol with outcome and organ dysfunction after out-of-hospital cardiac arrest (OHCA). Methods: Plasma was obtained after consent from next of kin in the FINNRESUSCI study conducted in 21 Finnish intensive care units (ICUs) between 2010 and 2011. We measured plasma copeptin (pmol/L) and free cortisol (nmol/L) on ICU admission (245 patients) and at 48 hours (additional 33 patients). Organ dysfunction was categorised with 24-hour Sequential Organ Failure Assessment (SOFA) scores. Twelve-month neurological outcome (available in 276 patients) was classified with cerebral performance categories (CPC) and dichotomised into good (CPC 1 or 2) or poor (CPC 3 to 5). Data are presented as medians and interquartile ranges (IQRs). A Mann-Whitney U test, multiple linear and logistic regression tests with odds ratios (ORs) 95% confidence intervals (CIs) and beta (B) values, repeated measure analysis of variance, and receiver operating characteristic curves with area under the curve (AUC) were performed. Results: Patients with a poor 12-month outcome had higher levels of admission copeptin (89, IQR 41 to 193 versus 51, IQR 29 to 111 pmol/L, P = 0.0014) and cortisol (728, IQR 522 to 1,017 versus 576, IQR 355 to 850 nmol/L, P = 0.0013). Copeptin levels fell between admission and 48 hours (P Conclusions: Admission copeptin and free cortisol were not of prognostic value regarding 12-month neurological outcome after OHCA. Higher admission copeptin and cortisol were associated with ICU death, and copeptin predicted subsequent organ dysfunction.Peer reviewe

    Elevations of inflammatory markers PTX3 and sST2 after resuscitation from cardiac arrest are associated with multiple organ dysfunction syndrome and early death

    Get PDF
    BACKGROUND: A systemic inflammatory response is observed after cardiopulmonary resuscitation. We investigated two novel inflammatory markers, pentraxin 3 (PTX3) and soluble suppression of tumorigenicity 2 (sST2), in comparison with the classic high-sensitivity C-reactive protein (hsCRP), for prediction of early multiple organ dysfunction syndrome (MODS), early death, and long-term outcome after out-of-hospital cardiac arrest. METHODS: PTX3, sST2, and hsCRP were assayed at ICU admission and 48 h later in 278 patients. MODS was defined as the 24 h non-neurological Sequential Organ Failure Assessment (SOFA) score 6512. Intensive care unit (ICU) death and 12-month Cerebral Performance Category (CPC) were evaluated. RESULTS: In total, 82% of patients survived to ICU discharge and 48% had favorable neurological outcome at 1 year (CPC 1 or 2). At ICU admission, median plasma levels of hsCRP (2.8 mg/L) were normal, while levels of PTX3 (19.1 ng/mL) and sST2 (117 ng/mL) were markedly elevated. PTX3 and sST2 were higher in patients who developed MODS (p<0.0001). Admission levels of PTX3 and sST2 were also higher in patients who died in ICU and in those with an unfavorable 12-month neurological outcome (p<0.01). Admission levels of PTX3 and sST2 were independently associated with subsequent MODS [OR: 1.717 (1.221-2.414) and 1.340, (1.001-1.792), respectively] and with ICU death [OR: 1.536 (1.078-2.187) and 1.452 (1.064-1.981), respectively]. At 48 h, only sST2 and hsCRP were independently associated with ICU death. CONCLUSIONS: Higher plasma levels of PTX3 and sST2, but not of hsCRP, at ICU admission were associated with higher risk of MODS and early death

    HIV-1 transmitted drug resistance in newly diagnosed individuals in Italy over the period 2015-21

    Get PDF
    background: transmitted drug resistance (TDR) is still a critical aspect for the management of individuals living with HIV-1. thus, its evaluation is crucial to optimize HIV care. methods: overall, 2386 HIV-1 protease/reverse transcriptase and 1831 integrase sequences from drug-naïve individuals diagnosed in north and central Italy between 2015 and 2021 were analysed. TDR was evaluated over time. Phylogeny was generated by maximum likelihood. Factors associated with TDR were evaluated by logistic regression. Results: Individuals were mainly male (79.1%) and Italian (56.2%), with a median (IQR) age of 38 (30-48). Non-B infected individuals accounted for 44.6% (N = 1065) of the overall population and increased over time (2015-2021, from 42.1% to 51.0%, P = 0.002). TDR prevalence to any class was 8.0% (B subtype 9.5% versus non-B subtypes 6.1%, P = 0.002) and remained almost constant over time. overall, 300 transmission clusters (TCs) involving 1155 (48.4%) individuals were identified, with a similar proportion in B and non-infected individuals (49.7% versus 46.8%, P = 0.148). a similar prevalence of TDR among individuals in TCs and those out of TCs was found (8.2% versus 7.8%, P = 0.707).By multivariable analysis, subtypes A, F, and CFR02_AG were negatively associated with TDR. No other factors, including being part of TCs, were significantly associated with TDR. conclusions: between 2015 and 2021, TDR prevalence in Italy was 8% and remained almost stable over time. resistant strains were found circulating regardless of being in TCs, but less likely in non-B subtypes. these results highlight the importance of a continuous surveillance of newly diagnosed individuals for evidence of TDR to inform clinical practice

    Elevated plasma heparin-binding protein is associated with early death after resuscitation from cardiac arrest

    Get PDF
    Background: An intense systemic inflammatory response is observed following reperfusion after cardiac arrest. Heparin-binding protein (HBP) is a granule protein released by neutrophils that intervenes in endothelial permeability regulation. In the present study, we investigated plasma levels of HBP in a large population of patients resuscitated from out-of-hospital cardiac arrest. We hypothesized that high circulating levels of HBP are associated with severity of post-cardiac arrest syndrome and poor outcome. Methods: Plasma was obtained from 278 patients enrolled in a prospective multicenter observational study in 21 intensive care units (ICU) in Finland. HBP was assayed at ICU admission and 48 h later. Multiple organ dysfunction syndrome (MODS) was defined as the 24 h Sequential Organ Failure Assessment (SOFA) score >= 12. ICU death and 12-month Cerebral Performance Category (CPC) were evaluated. Multiple linear and logistic regression tests and receiver operating characteristic curves with area under the curve (AUC) were performed. Results: Eighty-two percent of patients (229 of 278) survived to ICU discharge and 48 % (133 of 276) to 1 year with a favorable neurological outcome (CPC 1 or 2). At ICU admission, median plasma levels of HBP were markedly elevated, 15.4 [9.6-31.3] ng/mL, and persisted high 48 h later, 14.8 [9.8-31.1] ng/mL. Admission levels of HBP were higher in patients who had higher 24 h SOFA and cardiovascular SOFA score (p <0.0001) and in those who developed MODS compared to those who did not (29.3 [13.7-60.1] ng/mL vs. 13.6 [9.1-26.2] ng/mL, p <0.0001; AUC = 0.70 +/- 0.04, p = 0.0001). Admission levels of HBP were also higher in patients who died in ICU (31.0 [17.7-78.2] ng/mL) compared to those who survived (13.5 [9.1-25.5] ng/mL, p <0.0001) and in those with an unfavorable 12-month neurological outcome compared to those with a favorable one (18.9 [11.3-44.3] ng/mL vs. 12.8 [8.6-30.4] ng/mL, p <0.0001). Admission levels of HBP predicted early ICU death with an AUC of 0.74 +/- 0. 04 (p <0.0001) and were independently associated with ICU death (OR [95 %CI] 1.607 [1.076-2.399], p = 0.020), but not with unfavorable 12-month neurological outcome (OR [95 %CI] 1.154 [0.834-1.596], p = 0.387). Conclusions: Elevated plasma levels of HBP at ICU admission were independently associated with early death in ICU.Peer reviewe
    • 

    corecore