44 research outputs found

    Trait-based approaches to zooplankton communities

    Get PDF
    Zooplankton are major primary consumers and predators in most aquatic ecosystems. They exhibit tremendous diversity of traits, ecological strategies and, consequently, impacts on other trophic levels and the cycling of materials and energy. An adequate representation of this diversity in community and ecosystem models is necessary to generate realistic predictions on the functioning of aquatic ecosystems but remains extremely challenging. We propose that the use of trait-based approaches is a promising way to reduce complexity while retaining realism in developing novel descriptions of zooplankton in ecosystem models. Characterizing zooplankton traits and trade-offs will also be helpful in understanding the selection pressures and diversity patterns that emerge in different ecosystems along major environmental gradients. Zooplankton traits can be characterized according to their function and type. Some traits, such as body size and motility, transcend several functions and are major determinants of zooplankton ecological strategies. Future developments of trait-based approaches to zooplankton should assemble a comprehensive matrix of key traits for diverse groups and explore it for general patterns; develop novel predictive models that explicitly incorporate traits and associated trade-offs; and utilize these traits to explain and predict zooplankton community structure and dynamics under different environmental conditions, including global change scenarios. © 2013 The Author

    Antipredator behaviours of a spider mite in response to cues of dangerous and harmless predators

    Get PDF
    Prey are known to invest in costly antipredator behaviour when perceiving cues of dangerous, but not of relatively harmless predators. Whereas most studies investigate one type of antipredator behaviour, we studied several types (changes in oviposition, in escape and avoidance behaviour) in the spider mite Tetranychus evansi in response to cues from two predatory mites. The predator Phytoseiulus longipes is considered a dangerous predator for T. evansi, whereas Phytoseiulus macropilis has a low predation rate on this prey, thus is a much less dangerous predator. Spider mite females oviposited less on leaf disc halves with predator cues than on clean disc halves, independent of the predator species. On entire leaf discs, they laid fewer eggs in the presence of cues of the dangerous predator than on clean discs, but not in the presence of cues of the harmless predator. Furthermore, the spider mites escaped more often from discs with cues of the dangerous predator than from discs without predator cues, but they did not escape more from discs with cues of the harmless predator. The spider mites did not avoid plants with conspecifics and predators. We conclude that the spider mites displayed several different antipredator responses to the same predator species, and that some of these antipredator responses were stronger with cues of dangerous predators than with cues of harmless predators

    Predation constrains host choice for a marine mesograzer

    No full text

    copepod survival

    No full text
    Temora longicornis survivorship when exposed to Alexandrium fundyense and Rhodomonas len

    Data from: Intoxicated copepods: ingesting toxic phytoplankton leads to risky behaviour

    No full text
    Understanding interactions between harmful algal bloom (HAB) species and their grazers is essential for determining mechanisms of bloom proliferation and termination. We exposed the common calanoid copepod, Temora longicornis to the harmful algal bloom species Alexandrium fundyense and examined effects on copepod survival, ingestion, egg production and swimming behaviour. A. fundyense was readily ingested by T. longicornis and significantly altered copepod swimming behaviour without affecting copepod survival or fitness. A. fundyense caused T. longicornis to increase their swimming speed and the straightness of their path long after the copepods had been removed from the A. fundyense treatment. Models suggest that these changes could lead to a 25-56% increase in encounter frequency between copepods and their predators. This work highlights the need to determine how ingesting HAB species alters grazer behaviour as this can have significant impacts on the fate of HAB toxins in marine systems

    It takes guts to locate elusive crustacean prey

    No full text

    Assessing the \u3cem\u3eIn Situ\u3c/em\u3e Fertilization Status of Two Marine Copepod Species, \u3cem\u3eTemora longicornis\u3c/em\u3e and \u3cem\u3eEurytemora herdmani;\u3c/em\u3e How Common Are Unfertilized Eggs in Nature?

    No full text
    We utilized an egg staining technique to measure the in situ fertilization success of two marine copepod species, Temora longicornis and Eurytemora herdmani from May to October 2008 in coastal Maine and correlated fertilization success with environmental conditions in their habitat. T. longicornis is a free spawning species that releases eggs into the ambient seawater after mating. In contrast, E. herdmani carries eggs in an egg sac until they hatch. The proportion of fertilized eggs within E. herdmani egg sacs was significantly higher than the freely spawned clutches of T. longicornis. This may be a result of the asymmetrical costs associated with carrying vs. spawning unfertilized eggs. T. longicornis frequently laid both fertilized and unfertilized eggs within their clutch. T. longicornis fertilization was negatively associated with chlorophyll concentration and positively associated with population density in their local habitat. The fertilization status of E. herdmani egg sacs was high throughout the season, but the proportion of ovigerous females was negatively associated with an interaction between predators and the proportion of females in the population. This study emphasizes that, in addition to population level processes, community and ecosystem level processes strongly influence the fertilization success and subsequent productivity of copepods

    Assessing the in situ fertilization status of two marine copepod species, Temora longicornis and Eurytemora herdmani; how common are unfertilized eggs in nature?

    No full text
    We utilized an egg staining technique to measure the in situ fertilization success of two marine copepod species, Temora longicornis and Eurytemora herdmani from May to October 2008 in coastal Maine and correlated fertilization success with environmental conditions in their habitat. T. longicornis is a free spawning species that releases eggs into the ambient seawater after mating. In contrast, E. herdmani carries eggs in an egg sac until they hatch. The proportion of fertilized eggs within E. herdmani egg sacs was significantly higher than the freely spawned clutches of T. longicornis. This may be a result of the asymmetrical costs associated with carrying vs. spawning unfertilized eggs. T. longicornis frequently laid both fertilized and unfertilized eggs within their clutch. T. longicornis fertilization was negatively associated with chlorophyll concentration and positively associated with population density in their local habitat. The fertilization status of E. herdmani egg sacs was high throughout the season, but the proportion of ovigerous females was negatively associated with an interaction between predators and the proportion of females in the population. This study emphasizes that, in addition to population level processes, community and ecosystem level processes strongly influence the fertilization success and subsequent productivity of copepods
    corecore