395 research outputs found
Measuring the cosmological bulk flow using the peculiar velocities of supernovae
We study large-scale coherent motion in our universe using the existing Type
IA supernovae data. If the recently observed bulk flow is real, then some
imprint must be left on supernovae motion. We run a series of Monte Carlo
Markov Chain runs in various redshift bins and find a sharp contrast between
the z 0.05 data. The$z < 0.05 data are consistent with the bulk
flow in the direction (l,b)=({290^{+39}_{-31}}^{\circ},
{20^{+32}_{-32}}^{\circ}) with a magnitude of v_bulk = 188^{+119}_{-103} km/s
at 68% confidence. The significance of detection (compared to the null
hypothesis) is 95%. In contrast, z > 0.05 data (which contains 425 of the 557
supernovae in the Union2 data set) show no evidence for bulk flow. While the
direction of the bulk flow agrees very well with previous studies, the
magnitude is significantly smaller. For example, the Kashlinsky, et al.'s
original bulk flow result of v_bulk > 600 km/s is inconsistent with our
analysis at greater than 99.7% confidence level. Furthermore, our best-fit bulk
flow velocity is consistent with the expectation for the \Lambda CDM model,
which lies inside the 68% confidence limit.Comment: Version published in JCA
Effects of finite arm-length of LISA on analysis of gravitational waves from MBH binaries
Response of an interferometer becomes complicated for gravitational wave
shorter than the arm-length of the detector, as nature of wave appears
strongly. We have studied how parameter estimation for merging massive black
hole binaries are affected by this complicated effect in the case of LISA. It
is shown that three dimensional positions of some binaries might be determined
much better than the past estimations that use the long wave approximation. For
equal mass binaries this improvement is most prominent at \sim 10^5\sol.Comment: 10 pages, 3 figures, to appear in Phys.Rev.
BINGO: A code for the efficient computation of the scalar bi-spectrum
We present a new and accurate Fortran code, the BI-spectra and
Non-Gaussianity Operator (BINGO), for the efficient numerical computation of
the scalar bi-spectrum and the non-Gaussianity parameter f_{NL} in single field
inflationary models involving the canonical scalar field. The code can
calculate all the different contributions to the bi-spectrum and the parameter
f_{NL} for an arbitrary triangular configuration of the wavevectors. Focusing
firstly on the equilateral limit, we illustrate the accuracy of BINGO by
comparing the results from the code with the spectral dependence of the
bi-spectrum expected in power law inflation. Then, considering an arbitrary
triangular configuration, we contrast the numerical results with the analytical
expression available in the slow roll limit, for, say, the case of the
conventional quadratic potential. Considering a non-trivial scenario involving
deviations from slow roll, we compare the results from the code with the
analytical results that have recently been obtained in the case of the
Starobinsky model in the equilateral limit. As an immediate application, we
utilize BINGO to examine of the power of the non-Gaussianity parameter f_{NL}
to discriminate between various inflationary models that admit departures from
slow roll and lead to similar features in the scalar power spectrum. We close
with a summary and discussion on the implications of the results we obtain.Comment: v1: 5 pages, 5 figures; v2: 35 pages, 11 figures, title changed,
extensively revised; v3: 36 pages, 11 figures, to appear in JCAP. The BINGO
code is available online at
http://www.physics.iitm.ac.in/~sriram/bingo/bingo.htm
Interstellar MHD Turbulence and Star Formation
This chapter reviews the nature of turbulence in the Galactic interstellar
medium (ISM) and its connections to the star formation (SF) process. The ISM is
turbulent, magnetized, self-gravitating, and is subject to heating and cooling
processes that control its thermodynamic behavior. The turbulence in the warm
and hot ionized components of the ISM appears to be trans- or subsonic, and
thus to behave nearly incompressibly. However, the neutral warm and cold
components are highly compressible, as a consequence of both thermal
instability in the atomic gas and of moderately-to-strongly supersonic motions
in the roughly isothermal cold atomic and molecular components. Within this
context, we discuss: i) the production and statistical distribution of
turbulent density fluctuations in both isothermal and polytropic media; ii) the
nature of the clumps produced by thermal instability, noting that, contrary to
classical ideas, they in general accrete mass from their environment; iii) the
density-magnetic field correlation (or lack thereof) in turbulent density
fluctuations, as a consequence of the superposition of the different wave modes
in the turbulent flow; iv) the evolution of the mass-to-magnetic flux ratio
(MFR) in density fluctuations as they are built up by dynamic compressions; v)
the formation of cold, dense clouds aided by thermal instability; vi) the
expectation that star-forming molecular clouds are likely to be undergoing
global gravitational contraction, rather than being near equilibrium, and vii)
the regulation of the star formation rate (SFR) in such gravitationally
contracting clouds by stellar feedback which, rather than keeping the clouds
from collapsing, evaporates and diperses them while they collapse.Comment: 43 pages. Invited chapter for the book "Magnetic Fields in Diffuse
Media", edited by Elisabete de Gouveia dal Pino and Alex Lazarian. Revised as
per referee's recommendation
Hydrogen exchange resin for steam purity analysis
Reprint. Originally published: Industrial and engineering chemistry ; v. 47 (January 1955).Cover title.Includes bibliographical references
Recommended from our members
Identification of a Rare Coding Variant in Complement 3 Associated with Age-related Macular Degeneration
Macular degeneration is a common cause of blindness in the elderly. To identify rare coding variants associated with a large increase in risk of age-related macular degeneration (AMD), we sequenced 2,335 cases and 789 controls in 10 candidate loci (57 genes). To increase power, we augmented our control set with ancestry-matched exome sequenced controls. An analysis of coding variation in 2,268 AMD cases and 2,268 ancestry matched controls revealed two large-effect rare variants; previously described R1210C in the CFH gene (fcase = 0.51%, fcontrol = 0.02%, OR = 23.11), and newly identified K155Q in the C3 gene (fcase = 1.06%, fcontrol = 0.39%, OR = 2.68). The variants suggest decreased inhibition of C3 by Factor H, resulting in increased activation of the alternative complement pathway, as a key component of disease biology
Keeping secrets from parents: Advantages and disadvantages of secrecy in adolescence.
Item does not contain fulltex
Utilização de seis fontes alimentares para cabritos em crescimento: 1. Avaliação de alopecia e diarréia
Este experimento foi realizado para avaliar o efeito de diferentes fontes alimentares sobre o aparecimento de diarréia e de alopecia em cabritos em crescimento. Foi usado delineamento inteiramente casualizado com seis dietas (1 - leite, 2 - leite + zeranol, 3 - colostro, 4 - colostro + óleo, 5 - colostro + zeranol e 6 - colostro + óleo + zeranol) e cinco repetições. Escores fecais foram medidos diariamente. Os maiores escores fecais foram observados nas dietas 4 (1,655) e 6 (1,786). A maior incidência de diarréia foi observada nas dietas 4 e 6. As dietas 3, 4 e 6 aumentaram a presença de alopecia. A alopecia foi reversível e persistente para os diferentes períodos de duração do experimento. Os compostos fenólicos e os ácidos graxos foram responsáveis pela diarréia e alopecia.This experiment was carried out to evaluate the effects of different feed sources that can cause diarrhea and of alopecia in growing kids. A completely randomized design with six diets (1 - milk, 2 - milk + zeranol, 3 - colostrum, 4 - colostrum + soybean oil, 5 - colostrum + zeranol and 6 - colostrum + soybean oil + zeranol) and five replicates was used. Fecal scores were daily measured. The highest fecal scores were observed on diets 4 (1.655) and 6 (1.786). The highest incidence diarrhea was observed on diets 4 and 6. The diets 3, 4 and 6 increased the alopecia incidence. The alopecia was reversible and persistant for different experimental periods. The phenolic compounds and fatty acids were responsible for diarrhea and alopecia
Tides in colliding galaxies
Long tails and streams of stars are the most noticeable upshots of galaxy
collisions. Their origin as gravitational, tidal, disturbances has however been
recognized only less than fifty years ago and more than ten years after their
first observations. This Review describes how the idea of galactic tides
emerged, in particular thanks to the advances in numerical simulations, from
the first ones that included tens of particles to the most sophisticated ones
with tens of millions of them and state-of-the-art hydrodynamical
prescriptions. Theoretical aspects pertaining to the formation of tidal tails
are then presented. The third part of the review turns to observations and
underlines the need for collecting deep multi-wavelength data to tackle the
variety of physical processes exhibited by collisional debris. Tidal tails are
not just stellar structures, but turn out to contain all the components usually
found in galactic disks, in particular atomic / molecular gas and dust. They
host star-forming complexes and are able to form star-clusters or even
second-generation dwarf galaxies. The final part of the review discusses what
tidal tails can tell us (or not) about the structure and content of present-day
galaxies, including their dark components, and explains how tidal tails may be
used to probe the past evolution of galaxies and their mass assembly history.
On-going deep wide-field surveys disclose many new low-surface brightness
structures in the nearby Universe, offering great opportunities for attempting
galactic archeology with tidal tails.Comment: 46 pages, 13 figures, Review to be published in "Tidal effects in
Astronomy and Astrophysics", Lecture Notes in Physics. Comments are most
welcom
The Physics of Star Cluster Formation and Evolution
© 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00689-4.Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.Peer reviewe
- …
