876 research outputs found

    Progress in the study of CdZnTe strip detectors

    Get PDF
    We report new performance measurements and computer simulations of a sub-millimeter pitch CdZnTe strip detector under study as a prototype imaging spectrometer for astronomical x-ray and gamma-ray observations. The prototype is 1.5 mm thick with 375 micron strip pitch in both the x and y dimensions. Previously reported work included demonstrations of half-pitch spatial resolution (approximately 190 microns) and good energy resolution and spectral uniformity. Strip detector efficiency measurements have also been presented. A model that includes the photon interaction, carrier transport and the electronics was developed that qualitatively reproduced the measurements. The new studies include measurements of the CdZnTe transport properties for this prototype in an effort to resolve quantitative discrepancies between the measurements and the simulations. Measurements of charge signals produced by laser pulses and (alpha) -rays are used to determine these transport properties. These are then used in the model to predict gamma-ray efficiencies that are compared with the data. The imaging performance of the detector is studied by scanned laser and gamma beam spot measurements. The results support the model\u27s prediction of nearly linear sharing of the charge for interactions occurring in the region between electrodes. The potential for strip detectors with spatial resolution much finer than the strip pitch is demonstrated. A new design scheme for strip detectors is shortly discussed

    Blur detection is unaffected by cognitive load

    Get PDF
    Blur detection is affected by retinal eccentricity, but is it also affected by attentional resources? Research showing effects of selective attention on acuity and contrast sensitivity suggests that allocating attention should increase blur detection. However, research showing that blur affects selection of saccade targets suggests that blur detection may be pre-attentive. To investigate this question, we carried out experiments in which viewers detected blur in real-world scenes under varying levels of cognitive load manipulated by the N-back task. We used adaptive threshold estimation to measure blur detection thresholds at 0°, 3°, 6°, and 9° eccentricity. Participants carried out blur detection as a single task, a single task with to-be-ignored letters, or an N-back task with four levels of cognitive load (0, 1, 2, or 3-back). In Experiment 1, blur was presented gaze-contingently for occasional single eye fixations while participants viewed scenes in preparation for an easy picture recognition memory task, and the N-back stimuli were presented auditorily. The results for three participants showed a large effect of retinal eccentricity on blur thresholds, significant effects of N-back level on N-back performance, scene recognition memory, and gaze dispersion, but no effect of N-back level on blur thresholds. In Experiment 2, we replicated Experiment 1 but presented the images tachistoscopically for 200 ms (half with, half without blur), to determine whether gaze-contingent blur presentation in Experiment 1 had produced attentional capture by blur onset during a fixation, thus eliminating any effect of cognitive load on blur detection. The results with three new participants replicated those of Experiment 1, indicating that the use of gaze-contingent blur presentation could not explain the lack of effect of cognitive load on blur detection. Thus, apparently blur detection in real-world scene images is unaffected by attentional resources, as manipulated by the cognitive load produced by the N-back task

    Development of an orthogonal-stripe CdZnTe gamma radiation imaging spectrometer

    Get PDF
    We report performance measurements of a sub-millimeter resolution CdZnTe strip detector developed as a prototype for astronomical instruments operating with good efficiency in the 30-300 keV photon energy range. The prototype is a 1.4 mm thick, 64×64 contact stripe CdZnTe array of 0.375 mm pitch in both dimensions. Pulse height spectra were recorded in orthogonal-stripe coincidence mode which demonstrate room-temperature energy resolution \u3c10 keV (FWHM) for 122 keV photons with a peak-to-valley ratio \u3e5:1. Good response is also demonstrated at higher energies using a coplanar grid readout configuration. Spatial resolution capabilities finer than the stripe pitch are demonstrated. We present the image of a 133Ba source viewed through a collimator slit produced by a 4×4 stripe detector segment. Charge signals from electron and hole collecting contacts are also discussed

    Can Ultrasound Be Used to Improve the Palpation Skills of Physicians in Training? A Prospective Study

    Full text link
    BackgroundAccurate diagnosis of musculoskeletal disorders relies heavily on the physical examination, including accurate palpation of musculoskeletal structures. The literature suggests that there has been a deterioration of physical examination skills among medical students and residents, in part due to increased reliance on advanced imaging. It has been shown that knowledge of musculoskeletal anatomy and physical examination skills improve with the use of ultrasound; however, the literature is limited.ObjectiveTo determine whether ultrasound can improve the ability of physicians in training (residents) to palpate the long head of the biceps tendon (LHBT) in the bicipital groove.DesignProspective study design.SettingTertiary care center.ParticipantsTen physical medicine and rehabilitation residents served as subjects. Exclusion criteria included the presence of any condition that precluded their ability to palpate. Three volunteers were used as models. Model exclusion criteria included anything that distorted normal shoulder anatomy or inhibited examiner palpation. Three investigators with experience performing diagnostic musculoskeletal ultrasound were used to confirm palpation attempts.MethodsSubjects attempted to palpate the LHBT bilaterally in the bicipital groove of each model. Investigators assessed the accuracy of the palpation attempt using real‐time ultrasonography. Subjects participated in a 30‐minute ultrasound‐assisted training session learning how to palpate the LHBT in the bicipital groove with ultrasound confirmation. After the ultrasound training session, subjects again attempted to palpate the LHBT in the bicipital groove of each model with investigator confirmation.Main Outcome MeasurementsLHBT palpation accuracy rates preintervention versus postintervention.ResultsPretraining LHBT palpation accuracy was 20% (12/60 attempts). Post‐ultrasound training session accuracy was 51.7% (31/60 attempts; P ≤ .001).ConclusionsOur findings demonstrate that palpation accuracy improves after ultrasound assisted LHBT palpation training. These data suggest that the use of ultrasound may be beneficial when teaching musculoskeletal palpation skills to health care professionals.Level of EvidenceIIPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146948/1/pmr2730.pd

    CdZnTe strip detectors as sub-millimeter resolution imaging gamma radiation spectrometers

    Get PDF
    We report γ-ray detection performance measurements and computer simulations of a sub-millimeter pitch CdZnTe strip detector. The detector is a prototype for γ-ray measurements in the range of 20-600 keV. The prototype is a 1.5 mm thick, 64×64 orthogonal stripe CdZnTe detector of 0.375 mm pitch in both dimensions, with approximately one square inch of sensitive area. Using discrete laboratory electronics to process signals from an 8×8 stripe region of the prototype we measured good spectroscopic uniformity and sub-pitch (~0.2 mm) spatial resolution in both x and y dimensions. We present below measurements of the spatial uniformity, relative timing and pulse height of the anode and cathode signals. We simulated the photon interactions and signal generation in the strip detector and the test electronics and we compare these results with the data. The data indicate that cathode signal-as well as the anode signal-arises more strongly from the conduction electrons rather than the holes

    Performance of CdZnTe strip detectors as sub-millimeter resolution imaging gamma radiation spectrometers

    Get PDF
    We report & gamma;-ray detection performance measurements and computer simulations of a sub-millimeter pitch CdZnTe strip detector. The detector is a prototype for & gamma;-ray astronomy measurements in the range of 20-200 keV. The prototype is a 1.5 mm thick, 64×64 orthogonal stripeCdZnTe detector of 0.375 mm pitch in both dimensions, with approximately one square inch of sensitive area. Using discrete laboratory electronics to process signals from an 8×8 stripe region of the prototype we measured good spectroscopic uniformity and sub-pitch (~0.2 mm) spatial resolution in both x and y dimensions. We present below measurements of the spatial uniformity, relative timing and pulse height of the anode and cathode signals, and the photon detection efficiency. We also present a technique for determining the location of the event in the third dimension (depth). We simulated the photon interactions and signal generation in the strip detector and the test electronics and we compare these results with the data. The data indicate that the cathode signal-as well as the anode signal-arises more strongly from the conduction electrons rather than the holes

    Balloon-borne coded aperture telescope for arc-minute angular resolution at hard x-ray energies

    Get PDF
    We are working on the development of a new balloon-borne telescope, MARGIE (minute-of-arc resolution gamma ray imaging experiment). It will be a coded aperture telescope designed to image hard x-rays (in various configurations) over the 20 - 600 keV range with an angular resolution approaching one arc minute. MARGIE will use one (or both) of two different detection plane technologies, each of which is capable of providing event locations with sub-mm accuracies. One such technology involves the use of cadmium zinc telluride (CZT) strip detectors. We have successfully completed a series of laboratory measurements using a prototype CZT detector with 375 micron pitch. Spatial location accuracies of better than 375 microns have been demonstrated. A second type of detection plane would be based on CsI microfiber arrays coupled to a large area silicon CCD readout array. This approach would provide spatial resolutions comparable to that of the CZT prototype. In one possible configuration, the coded mask would be 0.5 mm thick tungsten, with 0.5 mm pixels at a distance of 1.5 m from the central detector giving an angular resolution of 1 arc-minute and a fully coded field of view of 12 degrees. We review the capabilities of the MARGIE telescope and report on the status of our development efforts and our plans for a first balloon flight

    FIGS -- Faint Infrared Grism Survey: Description and Data Reduction

    Get PDF
    The Faint Infrared Grism Survey (FIGS) is a deep Hubble Space Telescope (HST) WFC3/IR (Wide Field Camera 3 Infrared) slitless spectroscopic survey of four deep fields. Two fields are located in the Great Observatories Origins Deep Survey-North (GOODS-N) area and two fields are located in the Great Observatories Origins Deep Survey-South (GOODS-S) area. One of the southern fields selected is the Hubble Ultra Deep Field. Each of these four fields were observed using the WFC3/G102 grism (0.8μm\mu m-1.15μm\mu m continuous coverage) with a total exposure time of 40 orbits (~ 100 kilo-seconds) per field. This reaches a 3 sigma continuum depth of ~26 AB magnitudes and probes emission lines to 1017 erg s1 cm2\approx 10^{-17}\ erg\ s^{-1} \ cm^{-2}. This paper details the four FIGS fields and the overall observational strategy of the project. A detailed description of the Simulation Based Extraction (SBE) method used to extract and combine over 10000 spectra of over 2000 distinct sources brighter than m_F105W=26.5 mag is provided. High fidelity simulations of the observations is shown to significantly improve the background subtraction process, the spectral contamination estimates, and the final flux calibration. This allows for the combination of multiple spectra to produce a final high quality, deep, 1D-spectra for each object in the survey.Comment: 21 Pages. 17 Figures. To appear in Ap
    corecore