622 research outputs found

    The Kolmogorov-Smirnov test for the CMB

    Full text link
    We investigate the statistics of the cosmic microwave background using the Kolmogorov-Smirnov test. We show that, when we correctly de-correlate the data, the partition function of the Kolmogorov stochasticity parameter is compatible with the Kolmogorov distribution and, contrary to previous claims, the CMB data are compatible with Gaussian fluctuations with the correlation function given by standard Lambda-CDM. We then use the Kolmogorov-Smirnov test to derive upper bounds on residual point source power in the CMB, and indicate the promise of this statistics for further datasets, especially Planck, to search for deviations from Gaussianity and for detecting point sources and Galactic foregrounds.Comment: Improved significance of the results (which remain unchanged) by using patches instead of ring segments in the analysis. Added sky maps of the Kolmogorov-parameter for original and de-correlated CMB ma

    Extraplanar Dust in Spiral Galaxies: Tracing Outflows in the Disk-Halo Interface

    Full text link
    There is now ample evidence that the interstellar thick disks of spiral galaxies are dusty. Although the majority of extraplanar gas in the first few kiloparsecs above the plane of a spiral galaxy is matter that has been expelled from the thin disk, the feedback-driven expulsion does not destroy dust grains altogether (and there is not yet any good measure suggesting it changes the dust-to-gas mass ratio). Direct optical imaging of a majority of edge-on spiral galaxies shows large numbers of dusty clouds populating the thick disk to heights z~2 kpc. These observations are likely revealing a cold, dense phase of the thick disk interstellar medium. New observations in the mid-infrared show emission from traditional grains and polycyclic aromatic hydrocarbons (PAHs) in the thick disks of spiral galaxies. PAHs are found to have large scale heights and to arise both in the dense dusty clouds traced through direct optical imaging and in the diffuse ionized gas. In this contribution, we briefly summarize these probes of dust in the thick disks of spiral galaxies. We also argue that not only can dust can be used to trace extraplanar material that has come from within the thick disk, but that its absence can be a marker for newly accreted matter from the circumgalactic or intergalactic medium. Thus, observations of dust can perhaps provide a quantitative measure of the importance of "outflow versus infall" in spiral galaxies.Comment: 8 pages; Invited review for the proceedings of "The Role of Disk-Halo Interaction in Galaxy Evolution: Outflow vs. Infall?" (Ed. M. de Avillez), in Espinho, Portugal, 18-22 August 2008 ; high resolution version at http://www.nd.edu/~jhowk/Papers/papers.html#conferenc

    Anisotropic exchange interaction of localized conduction-band electrons in semiconductor structures

    Full text link
    The spin-orbit interaction in semiconductors is shown to result in an anisotropic contribution into the exchange Hamiltonian of a pair of localized conduction-band electrons. The anisotropic exchange interaction exists in semiconductor structures which are not symmetric with respect to spatial inversion, for instance in bulk zinc-blend semiconductors. The interaction has both symmetric and antisymmetric parts with respect to permutation of spin components. The antisymmetric (Dzyaloshinskii-Moriya) interaction is the strongest one. It contributes significantly into spin relaxation of localized electrons; in particular, it governs low-temperature spin relaxation in n-GaAs with the donor concentration near 10^16cm-3. The interaction must be allowed for in designing spintronic devices, especially spin-based quantum computers, where it may be a major source of decoherence and errors

    Can residuals of the Solar system foreground explain low multipole anomalies of the CMB ?

    Full text link
    The low multipole anomalies of the Cosmic Microwave Background has received much attention during the last few years. It is still not ascertained whether these anomalies are indeed primordial or the result of systematics or foregrounds. An example of a foreground, which could generate some non-Gaussian and statistically anisotropic features at low multipole range, is the very symmetric Kuiper Belt in the outer solar system. In this paper, expanding upon the methods presented by Maris et al. (2011), we investigate the contributions from the Kuiper Belt objects (KBO) to the WMAP ILC 7 map, whereby we can minimize the contrast in power between even and odd multipoles in the CMB, discussed discussed by Kim & Naselsky (2010). We submit our KBO de-correlated CMB signal to several tests, to analyze its validity, and find that incorporation of the KBO emission can decrease the quadrupole-octupole alignment and parity asymmetry problems, provided that the KBO signals has a non-cosmological dipole modulation, associated with the statistical anisotropy of the ILC 7 map. Additionally, we show that the amplitude of the dipole modulation, within a 2 sigma interval, is in agreement with the corresponding amplitudes, discussed by Lew (2008).Comment: 24 pages, 9 figures, 5 tables. Matches version in JCA

    Risks, alternative knowledge strategies and democratic legitimacy: the conflict over co-incineration of hazardous industrial waste in Portugal.

    Get PDF
    The decision to incinerate hazardous industrial waste in cement plants (the socalled ‘co-incineration’ process) gave rise to one of the most heated environmental conflicts ever to take place in Portugal. The bitterest period was between 1997 and 2002, after the government had made a decision. Strong protests by residents, environmental organizations, opposition parties, and some members of the scientific community forced the government to backtrack and to seek scientific legitimacy for the process through scientific expertise. The experts ratified the government’s decision, stating that the risks involved were socially acceptable. The conflict persisted over a decade and ended up clearing the way for a more sustainable method over which there was broad social consensus – a multifunctional method which makes it possible to treat, recover and regenerate most wastes. Focusing the analysis on this conflict, this paper has three aims: (1) to discuss the implications of the fact that expertise was ‘confiscated’ after the government had committed itself to the decision to implement co-incineration and by way of a reaction to the atmosphere of tension and protest; (2) to analyse the uses of the notions of ‘risk’ and ‘uncertainty’ in scientific reports from both experts and counter-experts’ committees, and their different assumptions about controllability and criteria for considering certain practices to be sufficiently safe for the public; and (3) to show how the existence of different technical scientific and political attitudes (one more closely tied to government and the corporate interests of the cement plants, the other closer to the environmental values of reuse and recycling and respect for the risk perception of residents who challenged the facilities) is closely bound up with problems of democratic legitimacy. This conflict showed how adopting more sustainable and lower-risk policies implies a broader view of democratic legitimacy, one which involves both civic movements and citizens themselves

    A new approach to cosmological perturbations in f(R) models

    Full text link
    We propose an analytic procedure that allows to determine quantitatively the deviation in the behavior of cosmological perturbations between a given f(R) modified gravity model and a LCDM reference model. Our method allows to study structure formation in these models from the largest scales, of the order of the Hubble horizon, down to scales deeply inside the Hubble radius, without employing the so-called "quasi-static" approximation. Although we restrict our analysis here to linear perturbations, our technique is completely general and can be extended to any perturbative order.Comment: 21 pages, 2 figures; Revised version according to reviewer's suggestions; Typos corrected; Added Reference

    Dynamic Evolution Model of Isothermal Voids and Shocks

    Full text link
    We explore self-similar hydrodynamic evolution of central voids embedded in an isothermal gas of spherical symmetry under the self-gravity. More specifically, we study voids expanding at constant radial speeds in an isothermal gas and construct all types of possible void solutions without or with shocks in surrounding envelopes. We examine properties of void boundaries and outer envelopes. Voids without shocks are all bounded by overdense shells and either inflows or outflows in the outer envelope may occur. These solutions, referred to as type X\mathcal{X} void solutions, are further divided into subtypes XI\mathcal{X}_{\rm I} and XII\mathcal{X}_{\rm II} according to their characteristic behaviours across the sonic critical line (SCL). Void solutions with shocks in envelopes are referred to as type Z\mathcal{Z} voids and can have both dense and quasi-smooth edges. Asymptotically, outflows, breezes, inflows, accretions and static outer envelopes may all surround such type Z\mathcal{Z} voids. Both cases of constant and varying temperatures across isothermal shock fronts are analyzed; they are referred to as types ZI\mathcal{Z}_{\rm I} and ZII\mathcal{Z}_{\rm II} void shock solutions. We apply the `phase net matching procedure' to construct various self-similar void solutions. We also present analysis on void generation mechanisms and describe several astrophysical applications. By including self-gravity, gas pressure and shocks, our isothermal self-similar void (ISSV) model is adaptable to various astrophysical systems such as planetary nebulae, hot bubbles and superbubbles in the interstellar medium as well as supernova remnants.Comment: 24 pages, 13 figuers, accepted by ApS

    Dynamic Evolution of a Quasi-Spherical General Polytropic Magnetofluid with Self-Gravity

    Full text link
    In various astrophysical contexts, we analyze self-similar behaviours of magnetohydrodynamic (MHD) evolution of a quasi-spherical polytropic magnetized gas under self-gravity with the specific entropy conserved along streamlines. In particular, this MHD model analysis frees the scaling parameter nn in the conventional polytropic self-similar transformation from the constraint of n+γ=2n+\gamma=2 with γ\gamma being the polytropic index and therefore substantially generalizes earlier analysis results on polytropic gas dynamics that has a constant specific entropy everywhere in space at all time. On the basis of the self-similar nonlinear MHD ordinary differential equations, we examine behaviours of the magnetosonic critical curves, the MHD shock conditions, and various asymptotic solutions. We then construct global semi-complete self-similar MHD solutions using a combination of analytical and numerical means and indicate plausible astrophysical applications of these magnetized flow solutions with or without MHD shocks.Comment: 21 pages, 7 figures, accepted for publication in APS

    Measurement of 7Li(n,γ0)8Li cross sections at En=1.5-1340 eV

    Get PDF
    The 7Li(n,γ)8Li cross section is important in inhomogeneous big bang models, and as a constraint on model parameters used to determine the solar 7Be(p,γ)8B reaction rate. Values of the 7Li(n,γ0)8Li reaction cross section were measured for neutron energies between 1.5 and 1340 eV at the Oak Ridge Electron Linear Accelerator. The normalization of the cross section was determined by measuring the gamma-ray yield from the 7Li(n,γ0)8Li reaction relative to that from the 10B(n,αγ)7Li reaction. The cross section was found to have the inverse neutron-velocity relationship (1/υ) indicative of s-wave capture. These results help resolve ambiguities in previous measurements

    Half-metallicity and Slater-Pauling behavior in the ferromagnetic Heusler alloys

    Full text link
    Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and Applications" to be published in the series Springer Lecture Notes on Physics, P. H. Dederichs and I. Galanakis (eds). It contains a review of the theoretical work on the half-metallic Heusler alloys.Comment: Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and Applications" to be published in the series Springer Lecture Notes on Physics, P. H. Dederichs and I. Galanakis (eds
    corecore