1,474 research outputs found

    The [alpha/Fe] Ratios in Dwarf Galaxies: Evidence for a Non-universal Stellar Initial Mass Function?

    Full text link
    It is well established that the [alpha/Fe] ratios in elliptical galaxies increase with galaxy mass. This relation holds also for early-type dwarf galaxies, although it seems to steepen at low masses. The [alpha/Fe] vs. mass relation can be explained assuming that smaller galaxies form over longer timescales (downsizing), allowing a larger amount of Fe (mostly produced by long-living Type Ia Supernovae) to be released and incorporated into newly forming stars. Another way to obtain the same result is by using a flatter initial mass function (IMF) in large galaxies, increasing in this way the number of Type II Supernovae and therefore the production rate of alpha-elements. The integrated galactic initial mass function (IGIMF) theory predicts that the higher the star formation rate, the flatter the IMF. We have checked, by means of semi-analytical calculations, that the IGIMF theory, combined with the downsizing effect (i.e. the shorter duration of the star formation in larger galaxies), well reproduces the observed [alpha/Fe] vs. mass relation. In particular, we show a steepening of this relation in dwarf galaxies, in accordance with the available observations.Comment: 4 pages, 2 figures; to appear in the proceedings of the JENAM 2010 Symposium on Dwarf Galaxies (Lisbon, September 9-10, 2010

    Star Formation in Violent and Normal Evolutionary Phases

    Get PDF
    Mergers of massive gas-rich galaxies trigger violent starbursts that - over timescales of >100> 100 Myr and regions >10> 10 kpc - form massive and compact star clusters comparable in mass and radii to Galactic globular clusters. The star formation efficiency is higher by 1 - 2 orders of magnitude in these bursts than in undisturbed spirals, irregulars or even BCDs. We ask the question if star formation in these extreme regimes is just a scaled-up version of the normal star formation mode of if the formation of globular clusters reveals fundamentally different conditions.Comment: 4 pages To appear in The Evolution of Galaxies. II. Basic building blocks, eds. M. Sauvage, G. Stasinska, L. Vigroux, D. Schaerer, S. Madde

    Hubble Space Telescope photometry of multiple stellar populations in the inner parts of NGC 2419

    Get PDF
    We present new deep imaging of the central regions of the remote globular cluster NGC 2419, obtained with the F343N and F336W filters of HST/WFC3. The new data are combined with archival imaging to constrain nitrogen and helium abundance variations within the cluster. We find a clearly bimodal distribution of the nitrogen-sensitive F336W-F343N colours of red giants, from which we estimate that about 55% of the giants belong to a population with about normal (field-like) nitrogen abundances (P1), while the remaining 45% belong to a nitrogen-rich population (P2). On average, the P2 stars are more He-rich than the P1 stars, with an estimated mean difference of Delta Y = 0.05, but the P2 stars exhibit a significant spread in He content and some may reach Delta Y = 0.13. A smaller He spread may be present also for the P1 stars. Additionally, stars with spectroscopically determined low [Mg/Fe] ratios ([Mg/Fe]<0) are generally associated with P2. We find the P2 stars to be slightly more centrally concentrated in NGC 2419 with a projected half-number radius of about 10% less than for the P1 stars, but the difference is not highly significant (p=0.05). We find evidence of rotation for the P1 stars, whereas the results are inconclusive for the P2 stars, which are consistent with no rotation as well as the same average rotation found for the P1 stars. Because of the long relaxation time scale of NGC 2419, the radial trends and kinematic properties of the populations are expected to be relatively unaffected by dynamical evolution. Hence, they provide constraints on formation scenarios for multiple populations, which must account not only for the presence of He spreads within sub-populations identified via CNO variations, but also for the relatively modest differences in the spatial distributions and kinematics of the populations

    Compositionality for Quantitative Specifications

    Get PDF
    We provide a framework for compositional and iterative design and verification of systems with quantitative information, such as rewards, time or energy. It is based on disjunctive modal transition systems where we allow actions to bear various types of quantitative information. Throughout the design process the actions can be further refined and the information made more precise. We show how to compute the results of standard operations on the systems, including the quotient (residual), which has not been previously considered for quantitative non-deterministic systems. Our quantitative framework has close connections to the modal nu-calculus and is compositional with respect to general notions of distances between systems and the standard operations

    Remotely acting SMCHD1 gene regulatory elements: in silico prediction and identification of potential regulatory variants in patients with FSHD

    Get PDF
    Background: Facioscapulohumeral dystrophy (FSHD) is commonly associated with contraction of the D4Z4 macro-satellite repeat on chromosome 4q35 (FSHD1) or mutations in the SMCHD1 gene (FSHD2). Recent studies have shown that the clinical manifestation of FSHD1 can be modified by mutations in the SMCHD1 gene within a given family. The absence of either D4Z4 contraction or SMCHD1 mutations in a small cohort of patients suggests that the disease could also be due to disruption of gene regulation. In this study, we postulated that mutations responsible for exerting a modifier effect on FSHD might reside within remotely acting regulatory elements that have the potential to interact at a distance with their cognate gene promoter via chromatin looping. To explore this postulate, genome-wide Hi-C data were used to identify genomic fragments displaying the strongest interaction with the SMCHD1 gene. These fragments were then narrowed down to shorter regions using ENCODE and FANTOM data on transcription factor binding sites and epigenetic marks characteristic of promoters, enhancers and silencers

    Human health risk assessment: A case study involving heavy metal soil contamination after the flooding of the river Meuse during the winter of 1993-1994.

    Get PDF
    At the end of December 1993 and also at the end of January 1995, the river Meuse, one of the major rivers in Europe, flooded and river banks were inundated. We investigated the possible health risks of exposure to heavy metal concentrations in river bank soils resulting from the flooding of the river Meuse at the end of 1993. Soil and deposit samples and corresponding aerable and fodder crops were collected and analyzed for heavy metals. Although the soils of the floodplain of the river Meuse appeared severely polluted mainly by Cd and Zn, the heavy metal concentrations in the crops grown on these soils were within background ranges. Incidentally, the legal standard for Cd as endorsed by the Commodities Act was exceeded in wheat crops. The main exposure pathways for the general population were through the consumption of food crops grown on the river banks and through the direct ingestion of contaminated soils. For estimating potential human exposure in relation to soil pollution, we used a multiple pathway exposure model. For estimating the actual risk, we determined metal contents of vegetables grown in six experimental gardens. From this study, it can be concluded that there is a potential health risk for the river bank inhabitants as a consequence of Pb and Cd contaminations of the floodplain soils of the river Meuse, which are frequently inundated (averaged flooding frequency once every 2 years)

    Searching for globular cluster chemical anomalies on the main sequence of a young massive cluster

    Get PDF
    The spectroscopic and photometric signals of the star-to-star abundance variations found in globular clusters seem to be correlated with global parameters like the cluster’s metallicity, mass, and age. Understanding this behaviour could bring us closer to the origin of these intriguing abundance spreads. In this work we use deep HST photometry to look for evidence of abundance variations in the main sequence of a young massive cluster NGC 419 (∼105 M⊙, ∼1.4 Gyr). Unlike previous studies, here we focus on stars in the same mass range found in old globulars (∼0.75–1 M⊙), where light elements variations are detected. We find no evidence for N abundance variations among these stars in the Un − B and U − B colour–magnitude diagrams of NGC 419. This is at odds with the N variations found in old globulars like 47 Tuc, NGC 6352, and NGC 6637 with similar metallicity to NGC 419. Although the signature of the abundance variations characteristic of old globulars appears to be significantly smaller or absent in this young cluster, we cannot conclude if this effect is mainly driven by its age or its mass

    Searching for Multiple Populations in the Integrated Light of the Young and Extremely Massive Clusters in the Merger Remnant NGC~7252

    Get PDF
    Recent work has shown that the properties of multiple populations within massive stellar clusters (i.e., in the extent of their abundance variations as well as the fraction of stars that show the anomalous chemistry) depend on the mass as well as the age of the host cluster. Such correlations are largely unexpected in current models for the formation of multiple populations and hence provide essential insight into their origin. Here we extend or previous study into the presence or absence of multiple populations using integrated light spectroscopy of the ∼600\sim600~Myr, massive (∼107−108\sim10^7 - 10^8~\msun) clusters, W3 and W30, in the galactic merger remnant, NGC 7252. Due to the extreme mass of both clusters, the expectation is that they should host rather extreme abundance spreads, manifested through, e.g., high mean [Na/Fe] abundances. However, we do not find evidence for a strong [Na/Fe] enhancement, with the observations being consistent with the solar value. This suggests that age is playing a key role, or alternatively that multiple populations only manifest below a certain stellar mass, as the integrated light at all ages above ∼100\sim100~Myr is dominated by stars near or above the main sequence turn-off
    • …
    corecore