39 research outputs found
Transgenerational transmission of a stress-coping phenotype programmed by early-life stress in the Japanese quail
This study was funded by a BBSRC David Phillips Research Fellowship to K.A. Spencer (BB/L002264/1).An interesting aspect of developmental programming is the existence of transgenerational effects that influence offspring characteristics and performance later in life. These transgenerational effects have been hypothesized to allow individuals to cope better with predictable environmental fluctuations and thus facilitate adaptation to changing environments. Here, we test for the first time how early-life stress drives developmental programming and transgenerational effects of maternal exposure to early-life stress on several phenotypic traits in their offspring in a functionally relevant context using a fully factorial design. We manipulated pre- and/or post-natal stress in both Japanese quail mothers and offspring and examined the consequences for several stress-related traits in the offspring generation. We show that pre-natal stress experienced by the mother did not simply affect offspring phenotype but resulted in the inheritance of the same stress-coping traits in the offspring across all phenotypic levels that we investigated, shaping neuroendocrine, physiological and behavioural traits. This may serve mothers to better prepare their offspring to cope with later environments where the same stressors are experienced.Publisher PDFPeer reviewe
Early-life adversity programs long-term cytokine and microglia expression within the HPA axis in female Japanese quail
This work was funded by the Biotechnology and Biological Sciences Research Council (BBSRC grant no. BB/L002264/1 to K.A.S., C.Z. and S.D.H.), a David Phillips Research Fellowship (K.A.S.) and an EASTBIO BBSRC Doctoral Training Programme studentship (grant no. BB/J01446X/1 to D.J.W., supervisors K.A.S., S.D.H.). Data are available from Mendeley (Walker, 2019): http://dx.doi.org/10.17632/ 6r7d2pg2zk.1Stress exposure during prenatal and postnatal development can have persistent and often dysfunctional effects on several physiological systems, including immune function, affecting the ability to combat infection. The neuroimmune response is inextricably linked to the action of the hypothalamic–pituitary–adrenal (HPA) axis. Cytokines released from neuroimmune cells, including microglia, activate the HPA axis, while glucocorticoids in turn regulate cytokine release from microglia. Because of the close links between these two physiological systems, coupled with potential for persistent changes to HPA axis activity following developmental stress, components of the neuroimmune system could be targets for developmental programming. However, little is known of any programming effects of developmental stress on neuroimmune function. We investigated whether developmental stress exposure via elevated prenatal corticosterone (CORT) or postnatal unpredictable food availability had long-term effects on pro- (IL-1β) and anti-inflammatory (IL-10) cytokine and microglia-dependent gene (CSF1R) expression within HPA axis tissues in a precocial bird, the Japanese quail (Coturnix japonica). Following postnatal stress, we observed increased IL-1β expression in the pituitary gland, reduced IL-10 expression in the amygdala and hypothalamus, and reduced CSF1R expression within the hypothalamus and pituitary gland. Postnatal stress disrupted the ratio of IL-1β:IL-10 expression within the hippocampus and hypothalamus. Prenatal stress only increased IL-1β expression in the pituitary gland. We found no evidence for interactive or cumulative effects across life stages on basal cytokine and glia expression in adulthood. We show that postnatal stress may have a larger impact than elevated prenatal CORT on basal immunity in HPA-axis-specific brain regions, with changes in cytokine homeostasis and microglia abundance. These results provide evidence for postnatal programming of a pro-inflammatory neuroimmune phenotype at the expense of reduced microglia, which could have implications for central nervous system health and subsequent neuroimmune responses.Publisher PDFPeer reviewe
A marker of biological age explains individual variation in the strength of the adult stress response
This research was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) under grants BB/J016446/1, BB/J015091/1 and BB/J016292/1. The project has also received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. AdG 666669 (D.N.) and 268926 (P.M.)) K.A.S. was also funded by a BBSRC David Phillips Research Fellowship. The raw data and R script from this experiment are publicly available at: https://doi.org/10.5281/zenodo.846830 [38].The acute stress response functions to prioritize behavioural and physiological processes that maximize survival in the face of immediate threat. There is variation between individuals in the strength of the adult stress response that is of interest in both evolutionary biology and medicine. Age is an established source of this variation-stress responsiveness diminishes with increasing age in a range of species-but unexplained variation remains. Since individuals of the same chronological age may differ markedly in their pace of biological ageing, we asked whether biological age-measured here via erythrocyte telomere length-predicts variation in stress responsiveness in adult animals of the same chronological age. We studied two cohorts of European starlings in which we had previously manipulated the rate of biological ageing by experimentally altering the competition experienced by chicks in the fortnight following hatching. We predicted that individuals with greater developmental telomere attrition, and hence greater biological age, would show an attenuated corticosterone (CORT) response to an acute stressor when tested as adults. In both cohorts, we found that birds with greater developmental telomere attrition had lower peak CORT levels and a more negative change in CORT levels between 15 and 30 min following stress exposure. Our results, therefore, provide strong evidence that a measure of biological age explains individual variation in stress responsiveness: birds that were biologically older were less stress responsive. Our results provide a novel explanation for the phenomenon of developmental programming of the stress response: observed changes in stress physiology as a result of exposure to early-life adversity may reflect changes in ageing.Publisher PDFPeer reviewe
Chronological age, biological age, and individual variation in the stress response in the European starling : a follow-up study
This research was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) under grants BB/J016446/1 and BB/J016292/1; a doctoral training studentship to Annie Gott; and a David Phillips fellowship to Karen Spencer. The project has also received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. AdG 666669 (COMSTAR)).The strength of the avian stress response declines with age. A recently published study of European starlings (Sturnus vulgaris) found that a marker of biological age predicted the strength of the stress response even in individuals of the same chronological age. Specifically, birds that had experienced greater developmental telomere attrition (DTA) showed a lower peak corticosterone (CORT) response to an acute stressor, and more rapid recovery of CORT levels towards baseline. Here, we performed a follow-up study using the same capture-handling-restraint stressor in a separate cohort of starlings that had been subjected to a developmental manipulation of food availability and begging effort. We measured the CORT response at two different age points (4 and 18 months). Our data suggest a decline in the strength of the CORT response with chronological age: peak CORT was lower at the second age point, and there was relatively more reduction in CORT between 15 and 30 min. Individual consistency between the two age points was low, but there were modest familial effects on baseline and peak CORT. The manipulation of begging effort affected the stress response (specifically, the reduction in CORT between 15 and 30 min) in an age-dependent manner. However, we did not replicate the associations with DTA observed in the earlier study. We meta-analysed the data from the present and the earlier study combined, and found some support for the conclusions of the earlier paper.Publisher PDFPeer reviewe
Metabolomics analysis of type 2 diabetes remission identifies 12 metabolites with predictive capacity: a CORDIOPREV clinical trial study.
Type 2 diabetes mellitus (T2DM) is one of the most widely spread diseases, affecting around 90% of the patients with diabetes. Metabolomics has proven useful in diabetes research discovering new biomarkers to assist in therapeutical studies and elucidating pathways of interest. However, this technique has not yet been applied to a cohort of patients that have remitted from T2DM.
All patients with a newly diagnosed T2DM at baseline (n = 190) were included. An untargeted metabolomics approach was employed to identify metabolic differences between individuals who remitted (RE), and those who did not (non-RE) from T2DM, during a 5-year study of dietary intervention. The biostatistical pipeline consisted of an orthogonal projection on the latent structure discriminant analysis (O-PLS DA), a generalized linear model (GLM), a receiver operating characteristic (ROC), a DeLong test, a Cox regression, and pathway analyses.
The model identified a significant increase in 12 metabolites in the non-RE group compared to the RE group. Cox proportional hazard models, calculated using these 12 metabolites, showed that patients in the high-score tercile had significantly (p-value < 0.001) higher remission probabilities (Hazard Ratio, HR, high versus low = 2.70) than those in the lowest tercile. The predictive power of these metabolites was further studied using GLMs and ROCs. The area under the curve (AUC) of the clinical variables alone is 0.61, but this increases up to 0.72 if the 12 metabolites are considered. A DeLong test shows that this difference is statistically significant (p-value = 0.01).
Our study identified 12 endogenous metabolites with the potential to predict T2DM remission following a dietary intervention. These metabolites, combined with clinical variables, can be used to provide, in clinical practice, a more precise therapy.
ClinicalTrials.gov, NCT00924937.The CORDIOPREV study is supported by the Ministerio de Economia y
Competitividad, Spain, under the grants AGL2012/39615, PIE14/00005,
and PIE14/00031 associated to J.L.-M.; AGL2015-67896-P to J.L.-M. and A.C.;
CP14/00114 to A.C.; PI19/00299 to A.C.; DTS19/00007 to A.C.; FIS PI13/00023
to J.D.-L., PI16/01777 to F.P.-J. and P.P.-M.; Antonio Camargo is supported by
an ISCIII research contract (Programa Miguel-Servet CPII19/00007); Marina
Mora-Ortiz has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie grant
agreement No 847468; ‘Fundacion Patrimonio Comunal Olivarero’, Junta de
AndalucÃa (ConsejerÃa de Salud, Consejeria de Agricultura y Pesca, ConsejerÃa
de Innovacion, Ciencia y Empresa), ‘Diputaciones de Jaen y Cordoba’, ‘Centro
de Excelencia en Investigación sobre Aceite de Oliva y Salud’ and ‘Ministerio
de Medio Ambiente, Medio Rural y Marino’, Gobierno de España; ‘Consejeria
de Innovación, Ciencia y Empresa, Proyectos de Investigación de Excelencia’,
Junta de AndalucÃa under the grant CVI-7450 obtaiend by J.L.-M.; and we
would also like to thank the ‘Fondo Europeo de Desarrollo Regional (FEDER)’.S
Joint Observation of the Galactic Center with MAGIC and CTA-LST-1
MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes (IACTs), designed to detect very-high-energy gamma rays, and is operating in stereoscopic mode since 2009 at the Observatorio del Roque de Los Muchachos in La Palma, Spain. In 2018, the prototype IACT of the Large-Sized Telescope (LST-1) for the Cherenkov Telescope Array, a next-generation ground-based gamma-ray observatory, was inaugurated at the same site, at a distance of approximately 100 meters from the MAGIC telescopes. Using joint observations between MAGIC and LST-1, we developed a dedicated analysis pipeline and established the threefold telescope system via software, achieving the highest sensitivity in the northern hemisphere. Based on this enhanced performance, MAGIC and LST-1 have been jointly and regularly observing the Galactic Center, a region of paramount importance and complexity for IACTs. In particular, the gamma-ray emission from the dynamical center of the Milky Way is under debate. Although previous measurements suggested that a supermassive black hole Sagittarius A* plays a primary role, its radiation mechanism remains unclear, mainly due to limited angular resolution and sensitivity. The enhanced sensitivity in our novel approach is thus expected to provide new insights into the question. We here present the current status of the data analysis for the Galactic Center joint MAGIC and LST-1 observations
Ahora / Ara
La cinquena edició del microrelatari per l’eradicació de la violència contra les dones de l’Institut Universitari d’Estudis Feministes i de Gènere «Purificación Escribano» de la Universitat Jaume I vol ser una declaració d’esperança. Aquest és el moment en el qual les dones (i els homes) hem de fer un pas endavant i eliminar la violència sistèmica contra les dones. Ara és el moment de denunciar el masclisme i els micromasclismes començant a construir una societat més igualità ria.
Cadascun dels relats del llibre és una denúncia i una declaració que ens encamina cap a un món millor
Transgenerational transmission of a stress-coping phenotype programmed by early-life stress in the Japanese quail
An interesting aspect of developmental programming is the existence of transgenerational effects that influence offspring characteristics and performance later in life. These transgenerational effects have been hypothesized to allow individuals to cope better with predictable environmental fluctuations and thus facilitate adaptation to changing environments. Here, we test for the first time how early-life stress drives developmental programming and transgenerational effects of maternal exposure to early-life stress on several phenotypic traits in their offspring in a functionally relevant context using a fully factorial design. We manipulated pre- and/or post-natal stress in both Japanese quail mothers and offspring and examined the consequences for several stress-related traits in the offspring generation. We show that pre-natal stress experienced by the mother did not simply affect offspring phenotype but resulted in the inheritance of the same stress-coping traits in the offspring across all phenotypic levels that we investigated, shaping neuroendocrine, physiological and behavioural traits. This may serve mothers to better prepare their offspring to cope with later environments where the same stressors are experienced
Data archive for Gott et al. 'Chronological age, biological age, and individual variation in the stress response in the European starling: A follow-up study'
Data archive for Gott et al. 'Chronological age, biological age, and individual variation in the stress response in the European starling: A follow-up study'.
Revised version of September 4 2018.
Contains one data file and one R script to reproduce the analyses in the paper